
47

Hybrid-Based Maintainability Impact Analysis for Evolving Systems Mohamed et al

Hybrid-Based Maintainability Impact
Analysis for Evolving Systems

Samer I. Mohamed
(1)

, Islam A. M. ElMaddah
 (2)

 and Ayman M. Wahba
(3)

(1) Department of Computer and Systems.Ain Shams University (Egypt)
E-mail: samer.mohamed@eds.com

(2) Department of Computer and Systems.Ain Shams University (Egypt)

E-mail: islam_elmaddah@yahoo.co.uk

(3) Department of Computer and Systems.Ain Shams University (Egypt)

E-mail: ayman.wahba@gmail.com

ABSTRACT

Software maintenance becomes an integral part of software life cycle and
constitutes the most important fraction of the total cost of the software
lifecycle. Around 50-80 percent of the total lifecycle cost is consumed by
maintenance for evolving system. Thus systems with poor maintainability are
difficult to modify and require more cost to maintain. This difficulty arises from
the impact of the system components where the new requirements/goals will
be implemented. These new goals will result in modification of existing
components and creation of new components. In this paper, we present the
foundation for a new Hybrid-Based Maintainability Impact Analysis (HBMIA)
methodology for assessing the impact of the new goals to be selected for
implementation on the system new and existing components. (HBMIA) uses
not only the system history but it also gets benefit from the expert’s
experience. (HBMIA) balances between the system historical data and
experts data based on the organization’ maturity and experts experience for
system components. A case study is performed to demonstrate the added
value of the proposed (HBMIA).

Keywords: Software maintenance – Difficulty of Modification – Impact Analysis.

1- INTRODUCTION

According to IEEE standard software maintenance defined as follows, “Software
maintenance is the process of modifying a software system or component after
delivery to correct faults, improve performances, prevent problems or adapt to a
changed environment” [13]. This definition covers the different types of software
maintenance like corrective, perfective, preventive, and adaptive maintenance
[19, 14]. Adaptive maintenance involves the modifications to the software system
required by changes in the software operating environment [17]. Perfective main-
tenance refers to the changes originate from the new user requirements. Correc-
tive maintenance includes all the changes required to fix any faults or bugs in the
system [27]. Preventive maintenance focuses on preventing problems in the fu-
ture [4]. The definition also reflects the common view that software maintenance
is a post-delivery activity that starts when the system is released and encom-

48

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009
2 NO. #, MMMMMMMM 1996

passes all the activities that keep the operational [1, 23].
Our proposed (HBMIA), targeting perfectly the perfective maintenance in which
the system maintenance is done through new requirements requested from the
users to improve the total system performance. But (HBMIA) can be also used for
corrective, preventive and adaptive maintenance context. Through which the pro-
posed methodology will apply the changes requested from the users as new re-
quirements/goals to correct bugs, prevent problems and adapt to new working
environment.
Impact analysis is the activity of assessing the potential effects of a change with
the aim of minimizing unexpected side effects [40]. It also involves the identifica-
tion of the system’s components that need to be modified or created as a conse-
quence of the proposed modification [3, 30]. Impact analysis has a great benefit
for reducing the risks and unexpected outcomes from the system before imple-
menting the changes. Impact analysis information also can be used in planning
different project activities like resource estimation, schedule and cost allocation.
This information also can be used to reduce the rework cost and result in higher
quality [28, 29].
The organization of the paper is as follows. In the next section, we will refer to the
related work for our research. In section three we will elaborate the rationale and
research objectives for the proposed methodology (HBMIA). In section four, we
will discuss the (HBMIA) methodology specifications. Section five will illustrate the
practical advantages from the (HBMIA) through a case study. In section six, we
will validate the practical benefits from new (HBMIA) methodology through a
comparison versus other recent techniques. The final section summarizes our
conclusions and introduces our future research.

2- RELATED WORK

2-1 Difficulty of Modification (DoM)

Difficulty of Modification (DoM) is used for assessing the impact of the existing
components where the new goals to be implemented. (DoM) acts as measure
for how the existing components in the system to be maintained will be im-
pacted by the new goals to be implemented [15]. There is a set of factors affect-
ing (DoM) measurement. These factors are assessed based on the lower level
criteria that can be directly measured from the historical data available in the
organization metrics [6]. The set of factors that will subject to our analysis and
contribute to (DoM) of the existing components are size, complexity, health, un-
derstandability and functionality as shown in fig. 1. These factors are not as-
sumed to be necessary orthogonal. Size refers to that factor which measures
the ration of the added/modified code to the total component size. The most
common metric used for assessing the component size is the Source Line Of
Code or (SLOC) [10]. Complexity identifies that factor which measures the code
complexity [39]. The component complexity is affected by the relations between
the components themselves in the systems which are measured by the cou-
pling between components. The most common metric used to assess compo-
nent complexity is the McCabe’s Cyclomatic complexity [36]. Health refers to
that factor which measures the operational failure reported against the compo-

49

Hybrid-Based Maintainability Impact Analysis for Evolving Systems Mohamed et al

nent during field usage of the system. Unhealthy components will result in a
high risk for any small modification [5]. The health for any components can be
calculated as the ration between the numbers of defects against these compo-
nents to the total number of defects affecting system for any specific period [11].
Understandability refers to that factor measures the ease with which component
can be understood by the developer who modifying it. This will be function of
the expertise of whoever is making the change [16], how long this component is
part of the system [32], and quality of the documentation. The most common
metric used to assess the component understandability is the Halstead level
[11]. Functionality identifies how much functionality implemented per each com-
ponent. The most common metric used to assess functionality is Weighted
Method per Class (WMC) or can be calculated by the ration of the
added/modified functions per component to the total number of functions within
this component.

Figure 1 Difficulty of modification factors

2-2 Difficulty of Creation (DoC)

Difficulty of Creation (DoC) is used for assessing the impact of the new compo-
nents where the new goals to be implemented. (DoC) acts as a measure for how
many of the new components in the system to be maintained will be impacted by
the new goals to be implemented. The groups of factors that contribute to (DoC)
assessment are size, complexity, criticality, understandability and dependability as
shown in fig. 2. These factors as indicated in (DoM) factors are not assumed to be
orthogonal, or by other means they may affect each other [31]. Size factor can be
calculated as the ration between the new component size to the total size of the
new implemented components within a specific period of time. The most common
metric used for assessing the component size is the Source Line Of Code or
(SLOC) [26]. Complexity of the new component will be similar to that of the exist-
ing components which indicated in the previous section. Criticality refers to that
factor measures how critical the component. Understandability of the new com-

 Difficulty of modification

Size Complexity Health Understandability Functionality

Com 1 Com 2 Com N

50

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

ponents will be similar to that of the existing component as indicated in the previ-
ous section. Dependability identifies that factor which measures the relation be-
tween the new component and other system components. The most common
metric used to assess Dependability is coupling between components [38].

Figure 2 Difficulty of Creation factors

2-3 Metric-Based approach

Metric-based approach refers to that approach which gets benefit from the sys-
tem historical data to measure to which extent each component exhibit when sub-
jected to modification [22]. This measure will be used later to assess the impact of
the new goals on the components where these goals will be implemented. The
ability to adopt this approach depends on the organization maturity of collecting
relevant historical data over the product life cycle [40]. The main advantage of this
approach is that it gets benefit from the component history to identify the future
trends of the component when subject to modification. The main drawbacks of
this approach arise from its dependency on the organization maturity [21].

2-4 Expert-Based approach

Expert-based approach identifies that approach which uses the knowledge and
experience of experts who are familiar with the system components under con-
sideration [16]. The necessity to use this approach will depend on the availability
of experts within the organization. The main advantage of this approach over the
metric approach is that it can be used while there are problems of data availability
[20]. But the main drawback of this approach arises because it’s highly driven by
the data entered by the experts even when there is no evidence behind it. This
approach will be perfectly used to measure the Difficulty of Creation (DoC) be-
cause there is no history available for new system components result from the
new goals to be implemented [18].

 Difficulty of creation

Size Complexity Understandability

Com 1 Com 2 Com N

 Dependability Criticality

51

Hybrid-Based Maintainability Impact Analysis for Evolving Systems Mohamed et al

3- RATIONALE AND RESEARCH OBJECTIVES

3-1 Rationale

The rationale behind the (HBMIA) is to develop a new hybrid-based methodol-
ogy that combines both metric-based and expert-based approaches to gain the
advantages of both. Our contribution in the paper is two fold; first, develop a
new hybrid-based methodology that combines both expert-based and metric-
based approaches to evaluate the Difficulty of Modification (DoM) of exiting
components. Second, use the expert-based approach to evaluate the Difficulty
of Creation (DoC) of new components imposed by the new goals. The evalua-
tion from both (DoM) and (DoC) will be combined with Goals-Driven Impact
Analysis (GDIA) to asses the impact of goals selected for implementation on the
system components [40].

3-2 Research objectives

1-Design a characterization methodology for the system components that can
be used to assess the components based on quality attributes such as Difficulty
of Modification (DoM) for existing components and Difficulty of Creation (DoC)
for new components. This characterization methodology identifies the different
factors that affect both DoM and (DoC) and gets the proper system metrics that
can be used for the assessment of each factor.
2- Develop a methodology to incorporate both system metrics and experts con-
tributions together for each factor of the quality attributes.
3-Imeplement a technique to identify those components that would be impacted
by the implementation of the proposed goals. This technique will be called
Goals-Driven Impact Analysis (GDIA). (GDIA) will determine how the implemen-
tation of each goal would impact system components.
4-Use both the characterization methodology and (GDIA) to calculate the total
goal impact from the components where the goal to be implemented.
5-Design a prototype that uses the calculated goal impacts to identifies the best
goals to be selected for implementation.

4- HBMIA TECHNIQUE DETAILS

4-1 HBMIA architecture

We will demonstrate the different steps required to calculate the impact on the
system components where the new goals to be implemented as in fig. 3:

! Step 1: Use historical data repository of the system within the organization
to identify all the system components.

! Step2: Determine the different factors that affect Difficulty of Modification
(DoM) as shown in fig. 1.

! Step3: Determine the different factors that affect Difficulty of Modification
(DoC) as shown in fig. 2.

! Step4: Get the experts contributions for each component factor of both
(DoM) and (DoC). Each expert will be assigned weight according to his/her

52

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

experience with the component. Experts also will be assigned relative
weights based on their importance within the organization.

! Step 5: Aggregate the data collected from the experts along with the data
collected from the system historical data for each component. System his-
torical data will be assigned weight to reflect the maturity of the data col-
lected within the organization. This weight along with the relative expert’s
weights will control the portion by which each source will impact the total
calculated value for each component.

! Step 6: For each new goal to be implemented, identify those components
that will be impacted either through modification or creation.

! Step 7: Determine the eXtent of Modification (XoM) for each impacted
component. (XoM) determine to which extent the impacted component will
be modified by the proposed goal. For new component (XoM) will equal 1
but for existing components it will be value less than or equal to 1.

! Step 8: Calculate the new component Difficulty of Creation (DoC) value as
will be indicated in the next section in details.

! Step 9: Calculate the existing component Difficulty of Modification (DoM)
value as will be indicated in the next section in details.

! Step 10: Aggregate the calculated values of (DoM) and (XoM) for exiting
components along with (DoC) and XoM for new components to calculate
the total impact value of each goal.

4-2 HBMIA details

In order to show the HBMIA process details, we follow a set of steps to calculate
both (DoM) and (DoC) for each existing and new components respectively
along with the total impact associated with each goal. The following set of pa-
rameters will be used in the following formulas.

1- !: Prioritization vector for DoM/DoC factors of system components with di-
mension (N x 1) for DoM and (M x 1) for DoC.
2- N: Number of DoM factors.
3- M: Number of DoC factors.
4- ": Prioritization matrix for components with respect to each DoM/DoC factor.
The dimension of this matrix will be (Z x N) for DoM and (Z x M) for DoC.
5- Z: Number of system impacted components.
6- #: Prioritization vector of the components from the perspective of each ex-
pert.
7- K: Number of experts.
8- $: Weighting matrix for the components with respect to experts.
9- X: Number of experts plus 1.
10- DoM(c): Difficulty of Modification value for component (c).
11- DoC(c): Difficulty of Creation value for component (c).
12- XoM(c,g): eXtent of Modification for component (c) and goal (g).
13- MSize(c,g): Modified SLOC result from implementing goal (g) into compo-
nent (c).
14- Size(c) : Total component size.
15- T: Number of components impacted when implementing goal (g).
16- L: Number of new components impacted when implementing goal (g).

53

Hybrid-Based Maintainability Impact Analysis for Evolving Systems Mohamed et al

17- R: Number of existing components impacted when implementing goal (g).
18- Impact(g): Total impact of implementing goal (g) in the existing system com-
ponents.

Figure 3 HBMIA architecture

! Step 1: Prioritize DoM/DoC factors. This prioritization will show to which
extent each factor will impact the DoM/DoC relative to the other factors.
This relative importance of the factors will identify the effect of each factor
on DoM/DoC from the point of view of each expert and also based on the
maturity of these factors data within the system historical metrics. This will
result in a column vector of !(N)/!(M) with (N) refers to the number of fac-

Historical data

repository

New goals

repository

Identify sys-

tem compo-

nents

Determine

DoM factors

Determine

DoC factors

Gets experts

view for

 DoM

Get experts

views for

DoC

Calculate new

component DoC

Calculate existing

component DoM

Aggregate experts

and metrics data

for DoM

Impact assessment

Identify compo-

nent impacted by

each goal

Determine XoM for

impacted compo-

nents

54

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

tors affecting (DoM) and (M) refers to number of factors affecting (DoC).
The values entered by experts or taken from the historical metrics will take
values 1 to 9 such that 1 refers to equal importance, 5 strong importance
and 9 extreme importance. The values in between refers to intermediate
importance.

! Step 2: Normalize the values of the prioritization vector (!) such that :

(0 ! ! (n) ! 1) and (0 ! ! (m) ! 1) (1)

This will guarantee that:

% ! (n) = 1 and % ! (m) = 1 (2)

N M

! Step 3: Prioritize components with respect to each DoM/DoC factor. This

prioritization will determine how the DoM/DoC for each component will be
affected by each DoM/DoC factor. The result from this step is matrix "(Z x
N) with (Z) refers to the number of impacted system components. Each en-
try from this matrix (z,n) will show relative manner in which each factor in
column (n) affects the DoM/DoC of the component in row (z). The values
entered by experts or taken from the historical metrics will take values 1 to
9 such that 1 refers to equal importance, 5 strong importance and 9 ex-
treme importance. The values in between refers to intermediate impor-
tance.

! Step 4: Normalize the values of the prioritization vector (") such that :

(0 ! " (z,n) ! 1) and (0 ! " (z,m) ! 1) (3)

! Step 5: Calculate the relative priorities of components from the perspective

of each experts and with respect to the historical metrics data for each
component. This will be calculated using the below formula :

 #(e,z) = % " (z,m) x ! (m) (4)

 M

The result from step will be (K+1) vector with (K) refers to the number of
experts who contribute in this assessment plus metric vector result from
the historical data for each component.

! Step 6: Prioritize the components with respect to each expert based on his
familiarity and experience with each component. Since values for all com-
ponents from the historical metrics with same importance, then it can be
assigned the same weights for the metric vector of the components. The
result from this step will be a matrix $(z,x) with (X) refers to the number of
experts plus 1 for the metric vector. This will be used only for (DoM) calcu-
lation, but for (DoC) calculation will be using $(z,k) because there is no
historical metric contribution. The dimension of the resultant matrix will be
$(Z x X) for (DoM) and $(Z x K) for (DoC). The values entered by experts

55

Hybrid-Based Maintainability Impact Analysis for Evolving Systems Mohamed et al

or taken from the historical metrics will take values 1 to 9 such that 1 refers
to equal importance, 5 strong importance and 9 extreme importance.

! Step 7: Normalize the values of the prioritization vector ($) such that :

(0 ! $ (z,x) ! 1) and (0 ! $ (z,x) ! 1) (5)

This will guarantee that:

% $ (z,x) = 1 and % $ (z,k) = 1 (6)

 X K

! Step 8: Prioritize the experts with respect to each other. Each expert along

with the historical metric data will be assigned a relative weight to reflect
the importance and maturity of each with respect to the organization. The
result from this step is a column vector & (X) for (DoM) and & (K) for (DoC).
The values entered by organization will take values 1 to 9 such that 1 re-
fers to equal importance, 5 strong importance and 9 extreme importance.

! Step 9: Normalize the values of the prioritization vector ($) such that :

(0 ! & (x) ! 1) and (0 ! & (k) ! 1) (7)

This will guarantee that:

% & (k) = 1 and % & (x) = 1 (8)
 K X

! Step 10: Calculate the DoM/DoC values for each component. This step will

aggregate the different contributions from the experts and historical data
based on the assigned weights described in the previous steps. This will
be calculated using the below formulas:

DoM(c) = % $ (z,x) X #(e,z) X & (x) (9)

 X

DoC(c) = % $ (z,k) X #(e,z) X & (k) (10)

 K

The result from the above formulas will satisfy the inequalities:

(0 ! DoM(C) ! 1) and (0 ! DoC(C) ! 1) (11)

! Step 11: Calculate the eXtent of Modification (XoM) for each component,

goal pair such that XoM(c,g) will reflect to which extent component (c) will
be impacted/modified by implementing goal (g). This calculation will be
done only for existing components which subject to modification. XoM for
new components will be equal to 1 based on the above definition.

56

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

XoM(c,g) = MSize(c,g) / Size (c) (12)

! Step 12: Identify the list of component impacted by implementing each new

goal. The result from this step will be a list of component (T) impacted by
implementing goal (g). This step called Goals-Driven Impact Analysis
(GDIA).

! Step 13: Calculate the total impact of implementing goal (g) in existing sys-
tem. This impact will be affected by both existing components and new
components that impacted by implementing goal (g) in the system.

Impact(g) = % (1 + XoM(c,g)) * DoM(c) + % 2 * DoC(c) (13)

L R

The value of 2 in the above equation results from substituting of 1 for XoM(c,g)
for the new components. Taken into consideration that the total number of exist-
ing components (L) plus the total number of new components (R) impacted
while implementing goal (g) will equal to the total number of components (T)
which impacted by implementing goal (g).

5- CASE STUDY

The (HBMIA) will be evaluated for the components of the (KC1) case study from
the Metric Data Program [22] The Metrics Data Program is a database that con-
tains data about problems, products and metrics of a number of software pro-
jects. The main objective of the program is to gather, validate, arrange, save
and provide software metrics data for the software engineering community. The
case study (KC1) is a software component of a data processing unit within a
large ground system. The system is made up of 43 (KSLOC) of C++ code. The
error data for this code has been collected since the beginning of the project
over five years of development and maintenance. The data from (KC1) is ana-
lyzed to map it to the class level, so each component refers to a class within
KC1.
In order to show the practical benefit from the (HBMIA) we will consider 10 new
goals G1 to G10 scheduled for implementation as part of the future product
maintenance. In this case study, there are two experts (expert_1, expert_2)
along with the system historical data metrics data. The main objective of these
hypothetical goals and expert’s data is to be able to evaluate our proposed
(HBMIA) methodology against existing ones taking into consideration the real
data provided from the existing system of (KC1). Our scope through this case
study using (KC1) component is to show the impact of the system history met-
rics on evaluating the new goals impact on the existing system. Thus we pro-
posed 10 new goals along with expert’s data to be used through the evaluation.
Given the components affected by each new goal from table 1 to table 13 taken
into consideration that CM1, CM2, CM3 are existing system components while
CM4, CM5 are new components, we will be able to calculate the goals impacts
by following the (HBMIA) algorithm steps mentioned in the previous section.
These impacts values will identify which goals to be selected for implementation

57

Hybrid-Based Maintainability Impact Analysis for Evolving Systems Mohamed et al

based on the available product resources. The data given in table 1 indicate
both G1, G3 will result in creation of two new components CM4, CM5 respec-
tively along with modification of other existing components.

Table 1 Components impacted by new goals

Components/
Goals

CM1 CM2 CM3 CM4 CM5

G1 X X

G2 X

G3 X X X

G4 X

G5 X X X

G6 X X

G7 X

G8 X

G9 X X

G10 X X

Table 2 DoM factor historical metric values

Factors

Compo-
nents

Size Compl. Health Un-

derstd.

Function. Weight

CM1 0.13 1 0.06 1 0.07 1

CM2 0.02 0.13 0.07 0.41 0.05 1

CM3 0.06 0.35 0.09 0.25 0.08 1

Table 3 DoM factor values for expert_1

Factors

Components

Size Compl. Health Understd Function Weight

CM1 0.3 0.6 0.44 0.27 0.23 3

CM2 0.5 0.3 0.25 0.54 0.3 4

CM3 0.2 0.1 0.31 0.18 0.46 6

Table 4 DoM factor values for expert_2

Factors

Components

Size Compl. Health Understd Function Weight

CM1 0.2 0.43 0.26 0.44 0.27 5

CM2 0.7 0.21 0.6 0.37 0.37 7

CM3 0.1 0.36 0.14 0.12 0.12 3

Table 5 DoC factor values for expert_1

Factors

Components

Size Compl. Critical Understd Depend. Weight

CM4 0.71 0.7 0.28 0.6 0.6 1

CM5 0.29 0.3 0.72 0.4 0.4 2

58

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

Table 6 DoC factor values for expert_2

Factors

Components

Size Compl. Critical Understd Depend. Weight

CM4 0.75 0.44 0.53 0.75 0.6 3

CM5 0.25 0.56 0.47 0.25 0.4 2

Table 7 DoM factor historical metric weights

Factor

Size Complexity Health Understandability Functionality

Weight 1 1 1 1 1

Table 8 DoM factor weights for expert_1

Factor

Size Complexity Health Understandability Functionality

Weight 3 5 2 7 1

Table 9 DoM factor weights for expert_2

Factor

Size Complexity Health Understandability Functionality

Weight 5 2 6 3 4

Table 10 DoC factor weights for expert_1

Factor

Size Complexity Critical Understandability Dependability

Weight 2 6 4 9 3

Table 11 DoC factor weights for expert_2

Factor

Size Complexity Critical Understandability Dependability

Weight 7 1 3 7 4

Table 12 Relative expert’s weights

Expert Relative Weight

Historical Metric 9

Expert_1 3

Expert_2 5

Table 13 XoM data for modified components

Component Volume(SLOC) Modified size
(SLOC)

CM1 2789 2430

CM2 401 332

CM3 1621 1123

Following the steps detailed in the previous section, we will be able to calculate
the total goal impact on the system components as follows in the below steps:
! Step 1: Calculate the DoM/DoC for all the system components using for-

mulas 1 to 11. This will yield to the following results shown in table 14.

59

Hybrid-Based Maintainability Impact Analysis for Evolving Systems Mohamed et al

Table 14 DoM/DoC component values

Component DoM/DoC

CM1 0.09

CM2 0.11

CM3 0.05

CM4 0.11

CM5 0.08

! Step 2: Calculate the total goal impact based on the goal assignment
shown in table 1, (XoM) data in table 13 and DoM/DoC calculated values
shown in table 14 using formulas 12, 13. This yields to the following results
shown in table 15.

Table 15 Total goals impact values

As indicated from table 15, G3 is the goal with the greatest impact on the
system components and both G2, G8 are the goals with the lowest impact
on the system components. The goals proposed for implementation should
be selected based on their impacts on the system components such that
goals with lower impacts will be good candidates for implementation be-
cause it will consume lower resources and costs [40]. Thus calculating the
goal impact on system components can be used for better planning activi-
ties such as resource allocation and producing better estimates [35]. This
will enable project manger of the software product to get better control over
the product resource and achieve product success [25].

6- EVALUATION OF HBMIA VERSUS SIMILAR METHODOLOGY

In order to show the strength of the new proposed technique (HBMIA) com-
pared to other existing and similar approach proposed by Saliu [34], an empiri-
cal evaluation should be conducted. The main drawback of methodology pro-
posed by Saliu is that it depends mainly on experts experience with the system
components in deriving the information about these components even when
there is no evidence about their values. It also neglects the components history
of the system which contains valuable indicators about future trends of the sys-
tem components [21]. Saliu’s proposed methodology also takes the effect of
existing components only while calculating the total goal impact and neglecting

Goal Total impact

G1 0.33

G2 0.08

G3 0.58

G4 0.17

G5 0.45

G6 0.25

G7 0.20

G8 0.08

G9 0.25

G10 0.28

60

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

the effect of new components result from implementing the new goals.
On the other hand, we tried to cover these drawbacks in our proposed (HBMIA)
methodology. The new (HBMIA) combines the strengths of both metric-based
and expert-based approaches while collecting DoM/DoC factor values. It bal-
ances between historical and experts contributions through weights assigned
within the organization based on the importance and maturity of the experts and
historical data. (HBMIA) also gets the effect of the new components while calcu-
lating the total goal impacts. This will provide a better quality for the calculated
goal impact especially when the new goals result in creation of new compo-
nents.
In order to be able to compare the two methodologies, we will calculate the
(DoM) values for the existing components (CM1, CM2, and CM3) without taking
the effect of the historical metric data into consideration. This will result in the
data shown in table 16.

Table 16 DoM/DoC component values (Saliu’s methodology)

Component DoM

CM1 0.15

CM2 0.22

CM3 0.08

Calculate the total goal impact based on the goal assignment shown in table 1,
(XoM) data in table 13 and (DoM) calculated values shown in table 14 using
formulas 12, 13. This will yield to the following results shown in table 17.

Table 17 Total goals impact values (Saliu’s methodology)

Goal Total impact

G1 0.28

G2 0.13

G3 0.68

G4 0.28

G5 0.80

G6 0.41

G7 0.40

G8 0.13

G9 0.41

G10 0.53

To evaluate the (HBMIA) against Salui’s methodology, we will compare the re-
sults from the two methodologies as follows:
1. Comparing the data shown in tables 14, 16 for both methodologies, we

conclude that (DoM) values calculated by (HBMIA) is around 55% of the
corresponding values calculated by Saliu’s methodology. This indicates
that taking historical data into account while calculating the (DoM) for the
existing components will result in higher quality values which will affect the
goals impact calculation. The higher quality gained from (HBMIA) results
because of high maturity historical data used from (KC1) test case re-
flected also from the relative weight 9 given to historical data in table 12.

61

Hybrid-Based Maintainability Impact Analysis for Evolving Systems Mohamed et al

The metrics data is justifiable from system history over the past system re-
leases which differs from expert’s data that has no justification and it de-
pends only on the experts experience without any evidence on its quality.
The importance of using the hybrid-based approach through (HBMIA)
methodology is the ability to balance between the expert-based and metric-
based approaches based on the organization maturity. This is not the only
advantage for using the hybrid-based approach but it also overcomes the
bias effect of expert and provides a justifiable data based on the system
metrics as indicated in table 2. The data shown in tables 2, 3 and 4 indi-
cates that DoM values for components CM1, CM2 and CM3 calculated
from (HBMIA) reflect accurate results based on the relative weights de-
tailed in table 12. The main advantage from our (HBMIA) methodology
arises for cases where the existence of experts is hard and too expensive
to the organization. Thus (HBMIA) provides higher flexibility to accommo-
date with the business case to better provide higher accuracy based on the
maturity and availability of the experts.

2. Comparing the data shown in tables 15 and 17 we conclude that G3 has
the greatest impact from HBMIA while G5 has the greatest impact from
Saliu’s methodology. To evaluate the correctness behind these results, we
need to identify effect of each goal on the system components as indicated
in table 18.

 Table 18 Component impact from HBMIA and Saliu’s methodologies

Component name HBMIA impact Saliu!s impact

CM1 0.17 0.28

CM2 0.2 0.4

CM3 0.08 0.13

CM4 0.22 Not supported

CM5 0.16 Not supported

G5 results in modification of 3 existing system components (CM1, CM2,
CM3) while G3 results in creation of (CM4) and modification of (CM1,
CM2). Since creation of new components has a bigger impact on the sys-
tem than the modification of existing components [8], the results from
(HBMIA) tends to be more accurate than Saliu’s methodology results. This
can be also shown from G1 which results in creation of (CM5) and modifi-
cation of (CM1). The impact value calculated by (HBMIA) is much higher
than that calculated by Saliu’s which is reasonable because Saliu’s impact
result from the modification of (CM1) only and neglects the impact of new
component creation.

7. CONCLUSION

In this paper, we have presented a new methodology for calculating the impact
of implementing new goals on existing system called (HBMIA). Our contribution

62

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

7. CONCLUSION
In this paper, we have presented a new methodology for calculating the impact
of implementing new goals on existing system called (HBMIA). Our contribution
in this paper is two fold; first, the new (HBMIA) combines the strengths of both
metric-based and expert-based approaches while collecting DoM/DoC factor val-
ues. It balances between historical and experts contributions. Second, (HBMIA)
gets the effect of the new components while calculating the total goal impacts.
This will provide a better quality for the calculated goal impact especially when the
new goals result in creation of new components. Thus (HBMIA) will overcome the
drawbacks of existing similar approaches which depend only on the expert’s data
which has no evidence on its correctness and neglect the historical data which
has good indicators of the future trends of the system components.
Since only a few studies have been performed to evaluate the efficiency and suit-
ability of (HBMIA), there is a need to do further studies for some issues that can
affect the algorithm efficiency. Further evaluation for the different factors that influ-
ence both (DoM) and (DoC) is required. Further analysis for the type of modifica-
tion on the (DoM) assessment is required. Analyze how the software developer
productivity will impact the assessment of both (DoM) and (DoC).

REFERENCES
K.K. Aggarwal, Y. Singh, and J.K. Chhabra, “An Integrated Measure of [1]
Software Maintainability”, Proc. Annual Reliability and Maintainability
Symposium, IEEE, 2002.

A.J. Albrecht, “Measuring application development productivity”. Proc. IBM [2]
Applications Development Sysprosium (Monterey,Calif.), pp. 83- 92, 1979.

R.S. Arnold, S.A. Bohner, “Impact Analysis – Toward a Framework for [3]
Comparison”, Proc. Conference on Software Maintenance, Montreal,
Canada, IEEE Computer Society Press, Los Alamitos, CA, pp. 292-301,
1993.

L.J. Artur, Software Evolution: The Software Maintenance Challenge, John [4]
Wiley & Sons, New York, NY, 1988.

D. Ash, J. Alderete, L. Yao, P.W. Oman, and B. Lowther, “Using software [5]
maintainability models to track code health”, Proc. International
Conference on Software Maintenance, IEEE, 1994.

P. Bengtsson, “Towards Maintainability Metrics on Software Architecture: [6]
An Adaptation of Object-Oriented Metrics”. Proc. First Nordic Workshop
on Software Architecture. Research Report ISSN: 1103-1581, Blekinge
Institute of Technology, Ronneby, Sweden, pp. 87-91, 1998.

P. Bengtsson, “Architecture-Level Modifiability Analysis”, Ph.D. disseration, [7]
Blekinge Institute of Technology, Sweden, 2002.

63

Hybrid-Based Maintainability Impact Analysis for Evolving Systems Mohamed et al

B. Kitchenham and E. Mendes, “Software productivity measurement using [8]
multiple size measures,” IEEE Trans. On Software Engineering, vol. 30,
pp. 1023-1035, 2004.

S.A. Bohner, R.S. Arnold, Software Change Impact Analysis, IEEE [9]
Computer Soc. Press, Los Alamitos, CA, 1996.

S.D. Conte, H.E. Dunsmore and V.Y. Shen, Software Engineering Metrics [10]
and Models, Benjamin/Cummings Publishing Company, 1986.

N.E. Fenton and S.L. Pfleeger, Software Metrics -A Rigorous & Practical [11]
Approach, PWS Publishing Company, 1997.

R.B. Grady, “Successfully Applying Software Metrics”, IEEE Computer, vol. [12]
27, issue 9, 1994.

IEEE Standard for Software Maintenance, Std 1219-1998, Software Engi-[13]
neering Standard, vol. 2, 1999.

ISO/IEC-14764 Information technology – Software Maintenance, Standard, [14]
First edition, Nov 11, 1999.

M.M. Lehman, “On understanding Laws, evolution and conversation in the [15]
large program lifecycle”. Journal of Software & Systems, vol. 1, pp. 213 –
221, 1980.

M. Lindvall and K. Sandahl, “How Well do Experienced Software Develop-[16]
ers Predict Software Change?”, Journal of Systems and Software, vol. 1,
pp. 19-27,1998.

B. Lientz, E. Swanson, Software Maintenance Management, Reading, [17]
Mass., Addison-Westley, pp. 214, 1980.

L.C. Briand, V.R. Basili, Y.M. Kim, and D.R. Squier, “A Change Analysis Pro-[18]
cess to Characterize Software Maintenance Projects”, Proc. International
Conference on Software Maintenance, Victoria, Canada, 1994.

J. Martin and G. McClure, Software Maintenance: The Problem and its So-[19]
lutions, Prentice Hall, 1983.

K.D. Maxwell, L. Van Wassenhove and S. Dutta, “Software Development [20]
Productivity of European Space, Military, and Industrial Applications”, IEEE
Transactions on Software Engineering, vol. 22, pp. 706-718, 1996.

Metrics That Matter, Proc. 27th Annual NASA Goddard/IEEE Software En-[21]
gineering Workshop, 2002.

Metrics Data Program, NASA IV&V Facility [22] http://mdp.ivv.nasa.gov/. 2008.

S. Muthanna, K. Ponnambalam, K. Kontogiannis and B. Stacey, “A Maintain-[23]
ability Model for Industrial Software Systems Using Design Level Metrics”,
Proc. seventh Working Conference on Reverse Engineering (WCRE’00),
Brisbane, Australia, 2000.

64

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

NASA Technical Std. NASA-STD-8719.13A, Software Safety, [24] http://satc.
gsfc.nasa.gov/assure/nss8719_13.html. 1997.

J. M. Nicholas, Project Management for Business and Technology - Prin-[25]
ciples and Practice, 2nd Edition, Prentice Hall, Upper Saddle River, NJ,
2001.

P. Oman and J. Hagemeister, “Metrics for Assessing a Software System’s [26]
Maintainability”, Proc. Conference on Software Maintenance, IEEE, 1992.

P. Oman, , J. Hagemeister, , and D. Ash, , A Definition and Taxonomy for [27]
Software Maintainability, report SETL Report 91-08-TR, University of Idaho,
1991.

J.P. Queille, , J.F. Voidrot, , N. Wilde, , M. Munro, “The Impact Analysis Task [28]
in Software Maintenance: A Model and a Case Study”, Proc. International
Conference on Software Maintenance, Victoria, Canada, IEEE Computer
Society Press, Los Alamitos, CA, pp. 234-242, 1994.

T.M Pigoski, Practical Software Maintenance: Best Practices for Managing [29]
your Software Investment. Wiley, 1997

S. Robertson, and J. Robertson, Mastering the Requirements Process, [30]
Addison-Wesley, Harlow, England, 1999

J.F. Ramil and M.M. Lehman, “Metrics of Software Evolution as Effort Pre-[31]
dictors - A Case Study”, Proc. International Conference on Software Main-
tenance, IEEE, 2000

X. Ren, , F. Shah, , F. Tip, B. Ryder, and O. Chesley, Chianti, “A Tool for [32]
Change Impact Analysis of Java Programs”, Proc. Conference on Object-
Oriented Programming Systems, Languages, and Applications, October 26-
28, Vancouver, Canada, pp. 432-448, 2001.

O. Saliu, G. Ruhe, “Software release planning for evolving systems”. In-[33]
novations in Systems and Software Engineering – A NASA Journal vol 1,
189–204, 2005.

T. Scott, D. Farley, Slashing Software Maintenance Costs, Business Soft-[34]
wareReview, Indianapolis, 1988.

SEI Software Technology Review, Cyclomatic Complexity, http://www.sei.[35]
cmu.edu/, 2002.

C. Szyperski, Component Software - Beyond ObjectOriented Programming, [36]
Addison-Wesley, 1998.

S.R. Chidamber, C.F. Kemerer, “Towards a metrics suite for object oriented [37]
design”, Proc. International workshop on Principles of software evolution,
1991

65

Hybrid-Based Maintainability Impact Analysis for Evolving Systems Mohamed et al

R.J. Turver, and M. Munro, “An Early Impact Analysis Technique for Soft-[38]
ware Maintenance”. Journal of Software Maintenance Research and Prac-
tice, vol 6, pp. 35-52, 1994.

K. Wiegers, Software Requirements Second Edition, Microsoft Press, [39]
2003.

C. Wohlin, and A. Aurum, “Criteria for Selecting Software Requirements to [40]
Create Product Value: An Industrial Empirical Study’, in Value-based Soft-
ware Engineering”, Springer Verlag, Germany, pp. 179-200, 2006.

66

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

