
53

Asset Identification for Security Risk Haddad and Romero

Asset Identification for Security Risk Assessment in
Web Applications

Hisham M. Haddad (1) and Brunil D. Romero (2)

(1) Computer Science and Information Systems, Kennesaw State University (USA)
E-mail: hhaddad@kennesaw.edu

(2) Processes and Systems Department, Simón Bolívar University (Venezuela)
E-mail: bromero@usb.ve

ABSTRACT

As software applications become more complex they require more security, al-
lowing them to reach an appropriate level of quality to manage information,
and therefore achieving business objectives. Web applications represent one
segment of software industry where security risk assessment is essential. Web
engineering must address new challenges to provide new techniques and tools
that guarantee high quality application development. This work focuses asset
identification, the initial step in security risk assessment for web applications.
Risk assessment helps organizations determine security risks in information
management systems. The formal approach to identifying information assets for
risk assessment is investigated using the MAGERIT methodology and EBIOS
method. This work is carried out at Simón Bolivar University (Venezuela) for
its Student Opinion Survey Coordination web-based application. Under this re-
search, a methodological tool for asset identification was developed to help the
University achieve security risk assessment. Assets are identified according to
their priorities in the organizational environment. This work contributes to Web
Engineering in general, and to Information Security Management with emphasis
on security risk assessment.

Keywords: Information Security, Methodologies, Asset Identification, Or-
ganization Management, Risk Assessment, Tools, Web Applications, Web
Engineering.

1- INTRODUCTION

The complexity of web applications requires the consideration of appropriate
mechanisms that guarantee their quality. Security is a quality attribute that must
be part of web applications. In fact, the Security Risk Management field has
evolved and established valuable risk assessment procedures and tools. During
the last decade, the development and use of web applications have been more
complex, sophisticated, and intensified. The current design and development of
web applications manage solutions for different needs inside the organization,
such as guarantee of effective handling of information and support for decision
making. The development of information systems, through web applications,
should accommodate variety of security requirements inside an organization.

54

Int.J. of Software Engineering, IJSE Vol.2 No.3 December 2009

Web applications have special characteristics such as immediacy, evolution, and
continuous growth that define their development process as incremental and evo-
lutionary [1]. These characteristics make web engineering different than conven-
tional software engineering. In particular, application security and risk assess-
ment. Risk assessment is used as a diagnostic tool to determine security risks in
an organization. According to L. Sena and S. Tenzer [2], risk assessment repre-
sents the heart of security procedures in an organization seeking to achieve glo-
bal security management. Independent of the environment, common processes
for risk assessment involve determining what assets need protection, of what to
be protected, and how to make them protected [3].

Asset identification, the initial step of risk assessment, is of vital importance be-
cause it guarantees successful diagnosis of security concerns in web applica-
tions. Each asset is affected by a specific security dimension (dependability, integ-
rity, and/or confidentiality). Therefore, there are many complex events to evaluate
in order to suggest a systemic approach to manage security risks. In addition to
these considerations, this work involved a preliminary study of risk assessment
theoretical foundations (framework) and a case study to determine interrelated
characteristics that define the complexity of a web application. This work was car-
ried out at Simón Bolivar University (Venezuela) for its Student Opinion Survey
Coordination web-based application. The goal of this project is to develop a
methodological tool for asset identification, establishing the groundwork for the
remaining steps of security risk assessment (asset assessment and testing).

This paper is organized as follows: Section 2 highlights relevant background
information; Section 3 describes the research methodology adopted for this
project. Section 4 presents the developed asset identification methodological
tool. Section 5 is a reflection and concluding remarks.

2- BACKGROUND

This work required a preliminary study of software security vulnerabilities and miti-
gation strategies that can be adopted for the development of web applications. The
goal is to understand what security risk assessment involve when evaluating web
applications. The root causes of most security vulnerabilities are within the soft-
ware and are introduced during development. There are process improvement
models, risk management methods, and good practices and supporting tools
that have been reported to help reduce vulnerabilities and exploitable defects.
However, there is no single practice, process, or methodology offers the solu-
tion for software security. Therefore, different solutions have to be adapted for
particular vulnerabilities. Developers must be aware of such vulnerabilities and
their consequences [4].

2-1 SECURITY VULNERABILITIES

Wide range of software security vulnerabilities have been reported in the litera-
ture. A classification of vulnerabilities includes the following categories:

55

Asset Identification for Security Risk Haddad and Romero

1. Input Vulnerabilities: Denial Of Service (DOS) [5], Social Engineering [6], Input
Data Integrity, SQL Injection [7], and Cross-Site Scripting (XSS) [8].

2. Internal Data Vulnerabilities: Buffer Overflow [9], Memory Dump [10], and
Malicious Code [11].

3. Algorithmic Vulnerabilities: They results from debugging sessions that can
reveal the inner working of algorithms, allowing unauthorized users to test the
code under different input conditions to reveal its secrets.

4. Output Vulnerabilities: They result from software outputs and include Redi-
rection, Piggy Backing, and Information Disclosure.

5. Extensibility Vulnerabilities: They result from the integration of Commercial
Off The Shelf (COTS) software components and mobile code components.
These integrated components can attempt to compromise the security of the
overall system [12].

2-2 MITIGATION STRATEGIES

Security is enforced using functionalities such as data encryption, authentica-
tion, and access control [13]. Data encryption consists of making the informa-
tion either illegible (in order to ensure data confidentiality) or unalterable (digital
signature in order to ensure data integrity), or both. Encryption is used to protect
stored and exchanged information against reading or modification. Authentica-
tion, on the other hand, ensures the entity’s identity. That is, to verify that the
entity (e.g. a user or a process) is actually the one that it claims to be. Au-
thentication is considered the fundamental security mechanism. Access control
governs operations on system’s entities. For instance, in a file system, access
control consists of checking whether users are allowed to access files. Access
control clearly depends upon authentication, the entity’s identity having to be
unique and unforgivable. These security functionalities are the basis for mitiga-
tion strategies to over come the vulnerabilities discussed in the previous sec-
tion. These strategies help developers identify engineering practices and devel-
opment approaches to incorporate security into the design and implementation
of the software.

2-2-1 Input Strategies

Denial Of Service: A successful DOS mitigating strategy is to constantly check
the source of user input and detect any “excessive” access to the software from
that source. Requesting access to the system and attempting to supply the
same user credentials from more than one source during a given time period
or window should be checked, detected and disallowed. If the system require-
ments demand access from multiple sources at the same time for the same
user, a finite number should be used to reduce the resources the user can claim
during these sessions.

56

Int.J. of Software Engineering, IJSE Vol.2 No.3 December 2009

Social Engineering: Integrating biometrics [14], two factor challenge response,
and other stringent user authentication methods should be employed to mini-
mize a successful social engineering attack on the software. Enforcing rollover
or change of authentication credentials supplied by users to the software can
also minimize unauthorized access. User credentials with a limited life span
can prevent access if the attacker takes too long to supply the credentials they
obtained by social engineering means. In the case of brute force attack, enforc-
ing good non-trivial credentials gives attackers a challenging time, encouraging
them to move on. Non-trivial credentials include usernames with random letters
and numbers and passwords with at least four types of characters.

Input Data Integrity: The developer should check all input data to make sure it
meets the requirements and if possible perform checks on the input data and
transaction history. For example, in banking applications, if a customer has been
depositing or withdrawing same amount for several months, the software should
be able to flag if this pattern changes and allow for follow up to test the integrity
of the account transactions.

 Sql Injection: Validating user input take into account the following [15]: use
of parameterized queries and stored procedures; use of limited and offset pa-
rameters; use of white-list (principle of least privilege); and ensuring to provide
sufficient information to the user when an error occurs.

Cross-Site Scripting (XSS): Prevention calls for good coding practices and veri-
fication of input parameters. General approaches to prevent XSS include: en-
coding outputs based on input parameters; filtering input parameters for special
characters; and filtering outputs based on input parameters for special charac-
ters. Additionally, it is recommended to validate input parameters using white-list
(principle of least privilege) versus black-list approach (disallow) [15].

2-2-2 Internal Data Strategies

Buffer Overflow: The developer should use a modern string classes that does
not depend on a character delimiter for the size or length of a string. These
string class variables, as found in Java and other programming languages, pro-
vide a buffer against users taking advantage of knowledge of how a string or
data is stored in the memory.

Memory Dump: Developers should ensure that information is encrypted while
being temporarily stored in the memory and only decrypted while computation
is being applied. Fast hashing algorithms and processing power is available to
allow for data placed in memory to be encrypted and decrypted on the fly. This
will substantially reduced the likelihood of a memory dump causing information
to be available after the termination of the program code.

Malicious Code: The developer, who is aware of the Input vulnerabilities previ-
ously discussed and have implemented mitigating code, will find the output to

57

Asset Identification for Security Risk Haddad and Romero

their computations not as expected after a malicious program injected its own
data. The developer can reduce this form of vulnerability by being effective in
validating all input data before use and as previously mention encrypting the
data only when decrypting is used. This on the fly decryption can be used to
validate the origin of the data. If it was not entered through the normal input
interfaces or API, then it would not be decrypted properly and the developer
should discard and throw an exception.

2-2-3 Algorithmic Strategies

Debugging and reverse engineering is a common approach for securing algo-
rithms. Developers for their part in securing the software code should ensure that
the proprietary algorithm is not easily exposed when the software is released
for use. The developer can employ encryption and decryption techniques on
the code during execution. Setting the code so it is not easily debugged is also
a good way to secure the code. Other mitigation techniques include Fail-safe-
design1; defining how sensitive data has to be managed to get secured; and
auditing and logging options.

2-2-4 Output Strategies

Redirection: Setting up an SSL tunnel or some other trust relationship, using
strong encryption should be employed by the developer to secure the informa-
tion transfer from the software to the target recipient.

Unauthorized Viewing (piggy backing): In some cases, security may involve
requesting an authenticated user’s credential to verify that the person who re-
quested the data is the person who is about to read it. The display should have
a limited lifespan on the screen. This however is context base. A web page with
blog entry and information can stay on the screen indefinitely. A customer’s ac-
count information should stay displayed for a limited time (thirty to sixty seconds
or so), requiring a refresh or interaction by the user to ensure that the user is still
available to view the information.

Information Disclosure: To prevent information disclosure, it is necessary to take
into account the following coding practices: never include sensitive data in code;
eliminate code remarks and comments before generating the final version; han-
dle error messages from a lower layer and customize them before showing
them to the users; and avoid showing unnecessary information, among others.

2-2-5 Extensibility Strategies

There are different mitigating techniques to minimize the security impact of
COTS components, including confinement by placing restrictions on the privi-
leges COTS have when executing, if they are compromised they cannot take
advantage of the privileges of the executing module.

 (1) Event of failure responds in a way that will cause no harm or at least minimize the impact.

58

Int.J. of Software Engineering, IJSE Vol.2 No.3 December 2009

For extensible and mobile code software, the developer can make sure that
only signed and approved modules can be used on their system using various
crypto graphical means, verifying all communications among the modules so
modules don’t interfere with each other’s operations. R. Grimm and B. Bershard
[16] gave an excellent discussion on facing and ensuring system security in
extensible systems.

Table 1 provides a summary of discussed vulnerability classes and their sug-
gested mitigation strategies.

Table 1 Vulnerabilities and mitigation strategies.
Class Description Mitigation Strategies

Input
DOS, DDOS, Social
Engineering, Input Integrity,
Sql injection, and XSS.

Check Input, Minimize resource use
per session, trust relationship with
user.

Internal
data

Buffer Overflow, Memory
Dump, Malicious Code.

Encrypt/decrypt data as needed. Verify
source data.

Algorithmic Debugging, Reverse
Engineering.

Encrypt/decrypt hashing data and
code segments.

Output
Redirection, Unauthorized
viewing (piggy backing),
information disclosure.

Only show requested data, limit
output/sessions.

Extensibility COTS, extensible, mobile
code software.

Validate COTS, trust relation with
code, and use only verified signature
add-ons and libraries.

2-3 IMPLEMENTATION OF MITIGATION STRATEGY

The CYBSEC Security Systems [15] determined that software vulnerabilities
mainly deal with design and implementation faults, these kinds of faults deal
with the software development life cycle. Furthermore, recent studies [8,17,18]
trying to solve the complexity of mitigation strategies found two aspects that af-
fect the management of vulnerabilities: 1) software theoretical foundations and
2) software business interest. These two aspects are diverging, especially when
the software industry deal with cost cutting measure. Both aspects share a com-
mon point that should be recognized. That is, software quality involves high
cost. One approach to offset the high cost of development and be profitable is to
integrate security practices into each phase of the development life cycle. Such
practices help mitigate security vulnerabilities in software products.

In addition, there are external aspects related to insecure applications [15], such
as exponential growth of software applications, increasing number of vulner-
ability research (availability of testing tool, black market of vulnerabilities and
legitimate vulnerability market), time-lag between vulnerabilities and availabil-
ity of their solutions, and patch implementation cost. These aspects reflect the
complexity of software vulnerability.

59

Asset Identification for Security Risk Haddad and Romero

Requirements Analysis: In this development phase, asset identification (the first
step of security risk assessment [2]), helps developers identify the kind of threats
the software is likely to have. The Input and Output mitigation strategies should be
considered for this phase.

Design: In this phase, developers must conduct a threat modeling to describe
the possible threats that can occur in a given security environment. It’s com-
posed of three high-level steps: 1) understanding the adversary’s view, 2) char-
acterizing the security of the system, and 3) determining threats. The Internal
Data and Algorithmic mitigation strategies should be exercised in this phase.

Implementation: Often the choice of the programming language is done tac-
tically for compatibility reasons. However, the language strengths and weak-
nesses, along with the principles and practices for secure coding, should be the
key factors. In addition, implementing cryptography is a viable option. Even so,
it’s recommended not to develop new cryptography algorithms because it’s dif-
ferent from being a (good) security-code developer [18]. Also, the time it takes to
develop new algorithms. The Internal Data, Algorithmic and Extensibility mitiga-
tion strategies should be exercised in this phase.

Testing: This phase involved activities that take place throughout the life cycle
even before there are any code artifacts to test [19]. Functional security testing
and risk-based security testing should be exercised. Functional testing ensures
correct software behavior; while risk-based testing addresses software risks
and probe a specific risk that was previously identified through risk analysis. Au-
tomated tools for security testing are available and should be utilized throughout
the life cycle. Since some tools can perform simple tasks, the development team
should select testing tools appropriate to the application being developed.

Operation and Maintenance: Security aspects should be considered to mitigate
vulnerabilities, such as installation design, installation and hardening of the base
software, installation process, and operation and maintenance management.

Finally, throughout the development cycle, it is important to learn from mistakes
by implementing the following activities: 1) record and explain identified vulner-
abilities; 2) share information related to mitigation strategies used with develop-
ers; and 3) keep historical record by vulnerability type, responsible people and
risk level. Another important recommendation is to establish security metrics
to measure quality in: 1) the final product (vulnerabilities amount and security
functionality fulfillment) and 2) development process (fulfillment level of secu-
rity in software development life cycle). In addition, it is significant that security
metrics: 1) be measured in a coherent way (objective and repetitive criterions),
2) come from inexpensive data collections, 3) have precise measurement units,
and 4) be expressed in numbers (percentage, proportion or coefficient).

60

Int.J. of Software Engineering, IJSE Vol.2 No.3 December 2009

3- THEORETICAL FRAMEWORK

For the purpose of this work, this section describes the theoretical foundation for
this project. It highlights three essential aspects: risk assessment and its practices,
web application assets, and organizational environment.

3-1 RISK ASSESSMENT

Risk is defined as an eventuality that disables the achievement of an objective.
In the technological environment, risk is generally outlined alone as threat for
what is required to determine the occurrence grade of this eventuality and take
the necessary actions to reduce its impact [20]. “Risk is a function of the likeli-
hood of a given threat-source’s exercising a particular potential vulnerability,
and the resulting impact of that adverse event on the organization” [17]. Risks
in a technological environment (shown in Fig. 1) illustrate direct relationship
among the following elements:

1. Threat: Actions that can cause negative consequences in the operative
process of an organization.

2. Assets: Assets related to the information system or application to evaluate
(data, hardware, software, services, documents, human resources, among
others).

3. Impact: The consequences of the threat’s different occurrence.

4. Vulnerability: Certain inherent conditions to the assets or that exist in their
environment to facilitate materialization of threats making assets vulner-
able.

5. Likelihood: Evaluating all activities with uncertainty of what can be expected.

Figure 1 Elements of technology risk.

61

Asset Identification for Security Risk Haddad and Romero

Risk assessment is a diagnosis tool to establish real exhibition of risks in the or-
ganization. It is also known as the heart of all organized performance to achieve
security global management. Risk assessment implies determining What it is
needed to protect, Of what to be protected, and How to protect it. Risk assess-
ment involves a Risk Management Process illustrated in Fig. 2.

Risk Management refers to evaluating organizational resources to achieve cer-
tain security exhibition level [21]. The importance of risk management resides
in its ability to allow identifying future impacts of all projects in the organization
risk structure. It is a continuous process since it is necessary to periodically
evaluate if newly identified risks and the exposure to these risks calculated in
previous stages stay effective [2]. In addition, risk projection (risk estimation)
tries to measure each risk in two ways - the probability that the risk is real and
the consequences associated with the risk, if it happened.

Figure 2 Risk Management Process.

3-2 PRACTICES OF RISK ASSESSMENT

The practices of risk assessment are essential part of software development.
The primary goal is to identify and eliminate those risks with the greatest po-
tential to occur. This practice involves processes, procedures, and tools to help
organizations identify and manage potential risks.

The Ellipse method (proposed by Gómez A. [22]) was considered in this work
as it facilitates asset identification. The method consists of three ellipses: con-
centric (basic processes), intermediate (interaction between sub-processes),
and external (extrinsic organizations but have some relationship with the ap-

62

Int.J. of Software Engineering, IJSE Vol.2 No.3 December 2009

plication). The method allows visualizing different sub-processes that conform
to the entire application. It also allows identifying assets with user and process
ownership.

Furthermore, a group of risk assessment methods and tools, including COBRA,
CRAMM, EBIOS, MAGERIT, and OCTAVE, were evaluated under this work.
The evaluation criteria involved various parameters such as assistance soft-
ware availability, languages, first release date, conformance to IT standards,
and some general aspects that show their global vision. EBIOS and MAGERIT,
described below, were selected as they are supported by the most current IT
standards.

3-2-1 Methodology for Information Systems Risk Analysis and
Management (MAGERIT)

MAGERIT is a public methodology [23] that was elaborated by the Superior
Council of Electronic Administration of Spain. Its objective is to study risks
relevant to information systems and their associated environments. It is con-
formed by specific series of techniques for risk assessment: table analysis, al-
gorithmic analysis, attack trees, general techniques, and cost-benefit analysis.
MAGERIT´s specific objectives are:

1. to make professionals who are in charge of information systems aware of
the existence of risks and the necessity to deal with them on time,

2. to offer a systematic method to analyze such risks,

3. to help discover and formulate an appropriate plan of action to keep risks
under control, and

4. to support the organizational process for evaluation, auditing, certification,
or accreditation.

MAGERIT is used to introduce security mechanisms into information system
core to mitigate the system’s weaknesses and to ensure successful develop-
ment of the system. It is possible to cover various types of information systems,
independent of their complexity or importance. MAGERIT phases are shown in
the Fig. 3.

63

Asset Identification for Security Risk Haddad and Romero

Figure 3 MAGERIT phases.

3-2-2 Expression of Needs and Identification of Security Objectives
(EBIOS) Method

The EBIOS method is promoted by Central Information Systems Security Divi-
sion (France) as international norm. It offers a software tool to help users pro-
duce risk analysis and management steps according the five EBIOS method
phases. The EBIOS tool is free open source [24]. The method allows appreciat-
ing and treating risks relative to Information Systems Security (ISS). As an ad-
vantage, the method can be adapted to the context of each organization and be
adjusted to its own tools and methodologies, respecting the general philosophy
of the procedure. This flexibility is a true toolbox for the ISS actor. In addition,
it helps develop a complete global study of some information systems and a
detailed study of a particular information system. Fig. 4 shows EBIOS method
phases.

Figure 4 EBIOS method phases.

64

Int.J. of Software Engineering, IJSE Vol.2 No.3 December 2009

3-3 WEB APPLICATION ASSETS

The MAGERIT methodology states that “assets are seen as elements of an
information system or an application (or closely related with it) that give value
to the organization” [23]. It affirms that dependences among assets define the
measure of how a superior asset is affected by an inferior asset security inci-
dent. The superior assets depend on other assets such as equipments, commu-
nications or human resources. The dependency exists when the superior asset
security necessities are reflected in the inferior asset security necessities. In
other words, when a threat materializes in the inferior asset, it causes damage
in the superior asset. The MAGERIT methodology views asset organization in
layers. Layer 1: Environment; Layer 2: Information system or application; Layer
3: Information; Layer 4: Organization functions; and Layer 5: Other assets such
as credibility or good image, accumulated know how, criterion independence or
performance, among others.

On the other hand, the EBIOS method refers to assets as entities. It states
that “the evaluated system is formed of a group of technical and non-technical
entities that are convenient to identify and describe” [24]. The entities can be
of different types: hardware, software, networks, human resource, establish-
ments, organization, and the systems. These entities require protection since
they could have vulnerabilities that some attacks methods can take advantage
of. Attempts against functions or data considered as essential or immaterial of
the evaluated system. EBIOS uses a matrix to represent the mapping between
entities and essential elements of the system. The mapping is used to confront
threats and achieve risk assessment goals.

Under this research, it was possible to know that assets have wide range of
categories. In general, information and service assets could be identified, but it
depends on the analysis point of view. Knowing that the general architecture
of a web application includes three layers (data, logic, and presentation), these
layers cannot be considered in isolation. The application type and the content
being managed determine the setting and the importance of each of these lay-
ers. Therefore, the following are essential aspects of web application develop-
ment: Technical configuration, Software, Hardware, Human resource involved
with the application, Information to be managed, Organizational structure, and
Network infrastructure. All of these aspects define the structural design of the
web application, therefore this structure should be considered because it repre-
sents the pattern of asset distribution in this type of application.

3-4 ORGANIZATIONAL ENVIRONMENT
An organization is a system with a formal structure designed to support re-
sources such as financial, humans, technological, information, among others.
These resources are integrated in an organized way and regulated by norms
or standard practices to help accomplish the organization’s goals. Furthermore,
Organizations do not exist in isolation; they work with the overall environment.

65

Asset Identification for Security Risk Haddad and Romero

The term Organizational Environment refers to the forces that can make an im-
pact. Forces can change over time and made up of opportunities and threats [3].

There are different types of organizations. For instance, Universities are consid-
ered an especial type of organizations. They are characterized by their particular
configuration, which is called professional bureaucracy. According to Mintzberg
H., in this configuration the fundamental coordination mechanism is the normali-
zation of capabilities through the acquired knowledge by professional people in
their training phase [25]. Universities are characterized by being coordinated by
their own professional people, sometime there are cases in which professors
are designated as administrative or direction staff.

Nowadays, Universities are facing administrative (bureaucracy) problems and
are affected by external environment factors. This way, only the staff has the
opportunity to react to changes instead of producing the changes in their envi-
ronment. Many authors stated that this practice characterizes decision-making
processes to be more complex in Universities than business organizations be-
cause of the features mentioned above. These statements indicate the com-
plexity of the organizational environment in Universities.

4- RESEARCH METHODOLOGY

The research methodology selected for this work is base on formal foundations
applied in the methodology, given this research specific characteristics.

Methodological Focus: The focus is both qualitative and quantitative due to the
complex processes considered in the investigation whose resolution is more
appropriate considering both focuses [26,27].

Investigation Method: The method is a case study carried out at the Simón
Bolívar University, specifically for its Student Opinion Survey Coordination web-
based application. The case study methodology is valid when questions such
as “how” or “why” need to be answered, when the researcher has little control
over the events, and when the topic is contemporary. All three qualifiers apply
to this work [26].

The case study was performed based on Shaw [28], taking into account the
following objectives: 1) investigate current situation (case study); 2) analyze
(integral way) collected data; 3) conceptualize; and 4) show general conclusions
and research implications. Fig. 5 shows how the case study was performed.

66

Int.J. of Software Engineering, IJSE Vol.2 No.3 December 2009

 Figure 5 Case study phases.

It is important to note that a gathering data process was needed between first
two phases and the triangulation principle was applied. The triangulation princi-
ple deals with the process to verify data collected from different sources (direct
observation, survey, information resource, among others), allowing to achieve
research internal validity [28].

Investigation Modality: This research corresponds to feasible project modality be-
cause it proposes a methodological tool to carry out asset identification in web ap-
plications. Asset identification is required to achieve successful risk assessment.

Investigation Type: This work was supported by two investigation types: docu-
mental investigation, which is characterized by information search, document
analysis, and theoretical framework revision. The second type is field investiga-
tion that allows direct contacts with different groups of participants in the study
area, enriches each conducted observation, and strengthens the knowledge of
the topic in study. Table 2 shows the investigation specific objectives, the study
variables, the variables dimensions, the indicators for those defined dimen-
sions, sub-indicators for added levels of specificity to the investigation, and the
questions taking into account in the design of the surveys (number of questions
per sub-indicator).

67

Asset Identification for Security Risk Haddad and Romero

Table 2 Variables System and indicators.
Objectives Variables Dimensions Indicators Sub-indicators Question #

1. to diagnose the
current situation with
regard to the meth-
odologies and norms
of good practices
related with the Risk
Assessment in web
applications.

2. to design the
assets assessment
methodological tool
for Risk Assessment
in web applications.

3. to evaluate the
methodological tool
developed through
the case study in
the Simón Bolívar
University

Asset identifica-
tion for risk as-
sessment in web
application

Risk assessment
practices

Web application
assets

Organizational
environment

Environment Web application
configuration 1

Software

Web application
development
software

Authentication
software

1,2,3,4,5,6,7,8,9

Hardware
Server

Clients
1,2,3,4

Human re-
source

Clients

Participants
1,2

Information

Managed data
web application

Authentication
data

1,2,3,4

Organization Entities related to
web application 1,2,3,4,5,6

Network Network infra-
structure 1,2

Data Collection Techniques: Direct Observations and a Survey were utilized to
gather data from groups of participants. These techniques allowed the investi-
gators to interact with the organization’s human resource so that important opin-
ions and feedback are obtained. The survey technique was developed through
a group of questionnaires, which included opening questions set according to
different type of participants. The questionnaires were elaborated in order to
gather relevant information. The question set was designed taking into account
the case study questionnaires proposed by the EBIOS method assistance soft-
ware (version 2.0) [29] and the most relevant aspects contemplated in the theo-
retical framework. Each question took into consideration each of the identified
sub-indicators. The question set was designed to gather information to answer
each specific indicator.

Moreover, concurrent type validity was considered in this investigation. It con-
sists of a comparison between the measure of the investigation and another
standard measure to which the validity is known. The EBIOS case study ques-
tionnaire was the standard measure. In addition, the Ellipse method [22] was
utilized to visualize the precision of the different sub-processes involved in the
studied web application.

68

Int.J. of Software Engineering, IJSE Vol.2 No.3 December 2009

Data Analysis: The data analysis process required cross-case analysis. For this
type of analysis, A. Huberman and M. Miles affirm that “it allows a quick analysis
to observe the lines crossings and columns to have a general vision that makes it
possible to compare the information of all the cases and to identify patterns, topics,
similar and divergent aspects” [27]. The cross-case analysis was selected because
it is more adaptable for the type of results this research gathers.

Cross-case analysis allows obtaining code matrices to compare the results ob-
tained in each of the applied questionnaires. Each sub-indicator, shown in Table 2,
has a code matrix. A code matrix helps compare results between each interviewed
group of participants, especially when dealing with complex qualitative results.

An exhaustive search for software tools to support qualitative analysis was carried
out. Taking into account the specific characteristics of this research, the problem
statement and the investigation objectives, the variables system and indicators,
MAXQDA2007 software was selected for this project. The software is specially de-
signed to support qualitative analysis. It is available in multi-languages (Spanish,
German, and English), allows creating documents in RTF format, and is useful to
analyze textual data to develop theories and proofs.

5- ASSET IDENTIFICATION METHODOLOGICAL TOOL

As the first step, asset identification is an essential phase in risk assessment
practices. This phase represents a degree of complexity and is the primary
activity in the assessment process. Under this project, a methodological tool
(instrument) was developed to help identify assets with security risks in web
applications. The overall objective of the developed tool is to generate asset iden-
tifications that serve as input into the risk assessment process for web applications.
The specific objectives of the tool are to: 1) study the web application environment,
2) build the variables system and indicators for study and analysis, and 3) design
the necessary methodological instruments taking into account the study indicators
[30].

Application Environment: Studying the web application environment is essential
first step for asset identification. It is important that all elements involved in the
organization environment be identified to understand the business processes
in depth. This step requires different activities such as document revision and
gathering organizational information. The outcome of this step is creating a con-
text study. In this project, the Ellipse method was utilized to complement this
step, allowing the investigators to visualize different sub-processes involved in
the web application.

Variables System and Indicators: For this work, the Student Opinion Survey Co-
ordination informative resource [31] was used. It is based on the CATOWE mod-
el (C: Customers, A: Actors, T: Transformation process, O: Owners, W: World
view, E: Environment). The variables designed in the previous stage were used

69

Asset Identification for Security Risk Haddad and Romero

as a guide, but sub-indicators were necessary to identify for this case study,
specifically information and organization indicators.

Once the variables are completed and adapted to the case study, it is neces-
sary to develop an evaluation matrix that consists of Interviewed Participants
(to identify participating individuals to answer the questionnaires, whom belong
to the organization and human resource sub-indicators) and the Organizational
Indicators (to show asset categories: (E) Environment, (S) Software, (H) Hard-
ware, (HR) Human Resource, (I) Information, (O) Organization, and (N) Net-
work).

The matrix helped determine how the questionnaires are formed. According to
which person or entity function of the organization, and whether one or several
indicators are addressed. This way, N number of crossing marks is obtained for
each group of participants to indicate which questions will be included in their
questionnaire. Table 3 shows the resulted evaluation matrix for this project. It
consists of 5 questionnaires and the indicators addressed in each question-
naire.

Table 3 Evaluation matrix.

Interviewed Participants Organizational Indicators Questionnaire #

E S H HR I O N
Student Opinion Survey Coordination X X X 1

Information Engineering Department X X X X X X 2
Admission and Studies Control
Department X X 3

Telematics Services Department X X 4

Human resource Indicator
Student Opinion Survey Coordination
Council Advisor (members) X 5

The application of this tool (and its questionnaires) was guided and supervised
to facilitate appropriate help to the participants. It was important to receive sup-
port and necessary resources to facilitate the interview process and help partici-
pants complete the study questionnaires.

Analysis of Results: An analysis procedure was established for this project. In
this procedure, establishing inferences was necessary, and it was possible tak-
ing into account the relationships among the studied variables, dimensions, indi-
cators, and sub-indicators, to generate conclusions. The first step in the analysis
procedure was the cross-case analysis to establish the code matrix to compare
the results obtained from each questionnaire. The MAXQDA2007 software was
utilized to carry out operations such as text marking, text codification, categories
relating, and relationships visualization. The software allowed the investigators
to visualize the text code matrix for better interpretation of the results.

70

Int.J. of Software Engineering, IJSE Vol.2 No.3 December 2009

As a result of this methodological tool, a summary table of identified assets was
compiled (Table 4). The table was presented to the Information Engineering
Department. The table shows assets related to the Student Opinion Survey Co-
ordination web application considered in this study for security risk assessment.

With the help of this tool, it was possible to determine the appropriate design
for the questionnaires to help identify most critical assets in the web application.
Due to the research complexity, a subjectivity grade should be accepted in the
results. In addition, the results obtained from this tool indicate that there are
restrictions in the University that affect the way web applications are evaluated,
including technical, financial, and organizational restrictions. These restrictions
are the reasons to evaluate and reflect on strategies to reduce negative impact
in the organizational environment. Also, internal and external restrictions were
determined and it is necessary that the organization analyzes and reflects on
them as well

Table 4 Identified Assets.

Identified Assets Indicator

1. Web application configuration elements: Application Server, Data-
base Server, Authentication Service. environment

2. Web application: Administrative module, Query module, Opinion
module, and LDAP profiles. software

3. Equipments: web application auxiliary equipment. hardware

4. Data managed by the web application: Student auto-evaluation
module, professor perform module, USBID, profiles, and subject
information.

information

5. Network infrastructure: Queries, reports or graphs of surveys. Network

6- CONCLUSION

This work contributes to Information Security Management and Web Engineer-
ing, specifically to security risk assessment for web applications. Asset identi-
fication is crucial phase in risk assessment practices. This work led to the de-
velopment of a methodological tool for asset identification for web applications.
The work is base on the EBIOS method and the MAGERIT methodology. The
project was carried out through a case study of the Simón Bolívar University
(Venezuela) web application “Student Opinion Survey Coordination”.

To establish the ground work for this project, a preliminary study to investigate
software security vulnerabilities and mitigation strategies was conducted. The

71

Asset Identification for Security Risk Haddad and Romero

goal was to better understand security risks and risk assessment relevant to
web applications. In particular, the common classes of vulnerabilities and miti-
gation strategies to help alleviate such vulnerabilities.

The results obtained through the developed asset identification tool revealed
the University restrictions that affect the way web applications are developed
and implemented, including technical, financial, and organizational restrictions.
These restrictions are the reasons to evaluate and reflect on the University strat-
egies to reduce negative impact in the organizational environment. Internal and
external restrictions were also determined.

Interaction problems among organizational levels, such as: strategic, tactical,
and operative were found. These problems indicate that studies in this research
field are required to guarantee an effective organizational environment or at
least strategies to improve it. Another outcome was creating awareness about
web application development and security attributes that should be incorporated
in application development from a functional perspective. There are security
risks and it is impossible to completely eliminate all risks, but it is necessary to
take them into account. Finally, it is important to integrate security into the devel-
opment life cycle as it leads to better quality and secure software.

Future work will address asset assessment, the next step in the risk assessment
process. A methodological tool for risk assessment of web Application assets
will help organizations achieve appropriate level of security risk assessment.
Furthermore, a set of specific tests for each asset, based on standards or certi-
fied recommendations, will be established. Such tests help determine the real
state of each asset for possible incidents, vulnerabilities, and threats. Future ef-
forts will contribute to the design of strategies to establish effective information
security management processes in the University.

REFERENCES

[1] T. Powell, D. Jones, and D. Cutts, “Web Site Engineering: Beyond Web
Page Design”, Prentice Hall PTR, pp. 2-24, 1998.

[2] L. Sena, Andy S. Tenzer, “Introducción al riesgo Informático”. Facultad de
Ciencias Económicas y de Administración. Universidad de la República de
Montevideo, Uruguay, pp.16-17, 2004.

[3] R. Miles, C. Snow, and J. Pfeffer. “Organizational environment: concepts
and issues”. Industrial Relations, pp. 244-264,1974.

72

Int.J. of Software Engineering, IJSE Vol.2 No.3 December 2009

[4] B.D. Romero and H.M. Haddad, “Security Vulnerabilities and Mitigation
Strategies for Application Development.” Proceedings of the IEEE
International Conference on Information Technology: New Generations
(ITNG 2009), Las Vegas, Nevada, pp. 235-240.

[5] J. Mirkovic, “A taxonomy of DDoS attack and DDoS defense mechanisms”.
ACM SIGCOMM Computer Communication Review, pp. 39-53, 2004.

[6] A. Van Der Merwe, M. Loock, and M. Dabrowski, “Characteristics and
responsibilities involved in a Phishing attack”. Proceedings of the 4th
international symposium on Information and communication technologies,
pp. 249-254, 2005.

[7] M. Bishop, “Computer Security: Art and Science”, Addison-Wesley, section
18.2, 2003.

[8] CGISecurity. “The Cross Site Scripting FAQ”. www.cgisecurity.com/articles/
xss-faq.shtml, 2008.

[9] J. Xu, Z. Kalbarczyk, and R.K. Lyer. “Transparent runtime randomization
for security”, Proceedings 22nd International Symposium on Reliable
Distributed Systems, pp. 260-269, 2003.

[10] G. Hoglund, and G. McGraw. “Exploiting Software: How to Break Code”.
Pearson Higher Education, 2004.

[11] M. Howard, and D. LeBlanc, “Writing Secure Code”, Microsoft Press
Redmond, Wash, 2003.

[12] J. Tollerson and H.M. Haddad, “Conceptual Model for Integration of COTS
Components.” Proceedings of the International Conference on Software
Engineering Research and Practice (SERP 2006), Las Vegas, Nevada, pp.
613-619.

[13] M. Gasser. “Building a secure computer system”. Van Nostrand Reinhold,
pp. 3-6, 1998.

[14] N. Ratha, J. Connell, and R. Bolle, “Enhancing security and privacy in
biometrics-based authentication systems”. IBM Systems Journal, pp. 614-
634, 2001.

[15] CYBSEC Security Systems, Seminario de Seguridad en el Desarrollo del
software, Buenos Aires, Argentina, Agosto 2007.

[16] R, Grimm, and B. Bershad, “Security for extensible systems”, The 6th

73

Asset Identification for Security Risk Haddad and Romero

Workshop on Hot Topics in Operating Systems (HotOS-VI), pp. 62-66,
1997.

[17] G. Stoneburner, A. Goguen, and A. Feringa, “Computer Security”, Risk
Management Guide for Information Technology Systems. National Institute
of Standards and Technology Systems. Falls Church, VA, USA, pp. 8-26,
2002.

[18] A. Apvrille, and M. Pourzandi, “Software Development, Secure Software
- Development by Example”, IEEE Computer Society - IEEE Security &
Privacy. p.10, 2005.

[19] P. Gutmann, and I. Grigg, “Security Usability”, CryptoCorner, IEEE Security
and Privacy, 2005.

[20] R. Menéndez and A. Barzanallana, “Gestión de Riesgos en Ingeniería de
Software” Universidad de Murcia, 2005.

[21] J. Ramió, “Libro Electrónico de Seguridad Informática y Criptografía”
Versión 4.0, Universidad Politécnica de Madrid, http://www.criptored.upm.
es/guiateoria/gt_m001a.htm, 2005.

[22] A. Gómez, “Análisis y Evaluación del Riesgo de Información: Un Caso en
la Banca”, Centro de Negocios Pontificia Universidad Católica del Perú
(CENTRUM), pp. 20-21, 2006.

[23] Ministerio de Administraciones Públicas de España ”Libro I: Método.
MAGERIT. Metodología de Análisis y Gestión de Riesgos de los Sistemas
de Información”, versión 2, http://www.csi.map.es/csi/pdf/magerit_v2/
metodo_v11_final.pdf 07.15.2007, 2006.

[24] DCSSI Dirección Central de Seguridad de Sistemas de Información.
“Compendio – EBIOS”, http://www.ssi.gouv.fr/es/confianza/documents/
methods/ebiosv2-memento-2004-02-04_es.pdf 06.11.2007, 2007.

[25] H. Mintzberg, “La estructura de las organizaciones”. Editorial Ariel, 1979.

[26] R. Yin, “Case Study Research: Design and Methods”. Sage Publications,
Thousand Oaks, CA, 1994.

[27] A. Huberman, and M. Miles, “Qualitative Data Analysis”. 2nd edition,
Thousand Oaks, CA: Sage Publications, pp. 35-38, 1994.

[28] E. Shaw, “A guide to the Qualitative Research Process: Evidence from a
Small Firm Study”. Qualitative Market Research: An International Journal,

74

Int.J. of Software Engineering, IJSE Vol.2 No.3 December 2009

pp. 59-70, 1999.

[29] Open Source Software. EBIOS. Installation for Windows (ver. 2.0). http://
www.ssi.gouv.fr/IMG/zip/ebios-v2-win32-2005-06-07.zip, 2007.

[30] B.D. Romero, H.M. Haddad, and J.E. Molero, “A Methodological Tool for
Asset Identification in Web Applications: Security Risk Assessment.”
Proceedings of the IEEE International Conference on Software Engineering
Advances (ICSEA 2009), Porto, Portugal, pp. 413-418.

[31] Coordinación Encuesta de Opinión Estudiantil (EOE), “Reseña de la
Coordinación EOE”. Material Informativo Universidad Simón Bolívar, 2007.

