
29

Mohamed et alCriteria-Based Framework

Criteria-Based Framework for Software Product
management

Samer I. Mohamed (1), Islam A. M. ElMaddah (2),, and Ayman M. Wahba(3)

(1)	 Department of Computer and Systems.Ain Shams University (Egypt)
E-mail: samer.mohamed@eds.Com

(2)	 Department of Computer and Systems.Ain Shams University (Egypt)
E-mail: islam_elmaddah@yahoo.co.uk

(3)	 Department of Computer and Systems.Ain Shams University (Egypt)
E-mail: ayman.wahba@gmail.Com

ABSTRACT

Value-Based Software Engineering (VBSE) becomes one of the most promising
approaches for software product management [10]. It focuses on the critical role
by which stakeholders and business core values affect decision making which in
turn influence the product success. This paper illustrates the Criteria-Based ap-
proach for software product management through a computer based software
framework. The framework can select the best candidate requirements for each
release based on the stakeholders’ input values for multiple criteria associated
with each requirement. These criteria reflect the priority of each requirement not
only in terms of perceived importance to the stakeholder and anticipated imple-
mentation cost criteria [18] but also through technical risk, relative impact and
market-related aspects criteria. The framework has the capability to balance be-
tween the different stakeholders’ preferences based on the stakeholder’s weight
provided by the product manager [35]. By this means the introduced framework
will enable the product manager to overcome many challenges throughout the
product life cycle by providing him with the different features that make the de-
cision making process much easier and finally yields to product success [16].

Keywords: Release planning, Value-Based software engineering, Value-
Oriented prioritization, Hierarchical Cumulative Voting prioritization, Re-
quirements management tool.

1- INTRODUCTION

A value-based approach for software product management becomes one of
the major aspects that affect the software industry in the current market-driv-
en environment. This happens because satisfying the customers’ needs and
expectations becomes one of the most important factors for software product
success. Today’s market-driven environment with rapidly changing customer re-
quirements, needs faster adaptability by the product team to respond to these
changes while maintaining a focus on the value gained from these changes.

This approach is more appropriate for today’s challenging environment because
it sets not only goals for improving both productivity and product quality based

30

Int.J. of Software Engineering, IJSE Vol.3 No.1 January 2010

on the stakeholders’ considerations but it also keeps tracking for the core busi-
ness values over the product life cycle. Adopting this approach will help avoid
eventual shortfalls from the lack of user inputs, unrealistic expectations, unclear
objectives and incomplete requirements.

The product quality in software organizations is shaped by the ability to satisfy
their stakeholders’ requirements and expectations. Therefore, one of the major
aspects on which software organizations focus is how to maximize the satisfac-
tion of their stakeholders [15]. This requires a mechanism to support the deci-
sions regarding to the requirements contents of the different product releases as
well as maintaining the strategic organizational goals.

The product manager has a crucial task throughout the product life cycle due
to the ongoing challenges in the market-driven environment. Requirements pri-
oritization is considered to be one of these challenges. First, because the term
priority has different meanings and varies between different stakeholders. Sec-
ond, due to involving different stakeholders and combining their opinions and
preferences that may contradict with one another [4]. Thus, the decision making
process about which requirements to include within each release, becomes a
critical task for the product manager and makes an automated-support mecha-
nism critical for the product success [34].

Our main objective from this paper is the design of a new prioritization algorithm
that gets benefit from both Hierarchical Cumulative Voting (HCV) and Value-Ori-
ented prioritization techniques to come with a more powerful technique used as
the core engine for our product management framework. The proposed framework
incorporate and integrate other features like effort estimation and risk assessment
features that can be used to facilitate the product management over the product life
cycle.

The organization of this paper is as follows. In the next section, we will refer to the
related work for our research. The first part of this section will describe the require-
ments prioritization which is the main core engine of our framework. The second
part will describe two of similar product management frameworks from the market.
In section three, we will elaborate on the rationale for the criteria-based framework,
and the research methodology we have applied to develop it. In section four, we will
discuss the basic architecture of the criteria-based framework. In section five, the
basic framework features will be illustrated. In section six, an industrial case study
for a new software product will be represented to show how the framework works
under different conditions. The final section will summarize our conclusions and
suggest future directions for further work.

2- RELATED WOR

2-1 REQUIREMENTS PRIORITIZATION

Requirements prioritization becomes one of the critical parts of the product release

31

Mohamed et alCriteria-Based Framework

planning nowadays because it becomes necessary to distinguish the vital require-
ments from the less important ones in order to maximize the overall business value
by satisfying different key interests, technical constraints, and preferences of critical
stakeholders [4]. By identifying the requirements that are most important, least cost-
ly, least risky, it is possible to find a favorable mix of requirements that can be used
to produce a system that implements only a subset of all requirements, while still
satisfying customers. To find the requirements that add most value to business, it is
possible to utilize some of the available prioritization techniques. Two of the priori-
tization techniques that focus on maximizing the business value are the Hierarchi-
cal Cumulative Voting (HCV) prioritization and Value-Oriented Prioritization (VOP).
Our proposed prioritization technique Value-Oriented Hierarchical Cumulative Vot-
ing (VOHCV) integrates the strengths of both prioritization algorithms. VOHCV de-
pends not only on requirement value/importance to the stakeholder as HCV but it
takes different other aspects into account while prioritizing the requirements. Exam-
ples of these aspects are associated implementation cost, requirement technical
risk, relative impact and market-related aspects. VOHCV also supports hierarchical
requirements structure which differs from VOP that supports only flat structure. This
enables the proposed technique to prioritize requirements on different abstraction
levels. Supporting requirements prioritization on different levels of abstraction is vi-
tal because requirements exist naturally on different levels of abstraction and can
form hierarchical structures. In large-scale software development in general, and in
market-driven software development in particular, requirements commonly arrive
in different shapes and form, at multiple levels of abstraction, and are described at
various level of refinement. Lehtola and Kauppinen concluded that requirements on
different abstraction levels caused problems when performing prioritizations since
lower level requirements were considered as less important than higher level re-
quirements [20]. Thus, it is important to be aware of different abstraction levels
when prioritizing requirements, and requirements should only be compared with
requirements on the same abstraction level [31].

2-1-1 Hierarchical Cumulative Voting prioritization

HCV technique is one of the prioritization techniques that addresses the weak-
ness of the Analytical Hierarchy Process (AHP) technique and gets benefit from
the advantages of the Cumulative Voting (CV) technique. The main idea behind
the HCV technique is to quantify the importance of the requirements and prioritize
the requirements based on the weight given to each requirement. The main differ-
ence between CV and HCV is that not all requirements are prioritized at the same
time in the second technique, but prioritization is performed at different levels of the
hierarchy. The importance of this technique increases as the number of require-
ments grows, which makes the need for a structural approach to prioritize the re-
quirements vital. HCV supports that structural approach by using the relationships
between the requirements while performing the prioritization. The prioritization proc-
ess is done in a series of steps to minimize the number of requirements prioritized
at the same time [3].

32

Int.J. of Software Engineering, IJSE Vol.3 No.1 January 2010

2-1-1 Value-oriented prioritization

VOP is one of the prioritization techniques that are proved to align product
demands with company goals and stakeholders expectations. This is done
through providing a visible and defined process for prioritizing and managing
requirements over the product life cycle [30]. It helps the stakeholder view the
whole picture for the sake of the organization targets and vision, rather than
arguing over which product requirements to implement. The main idea behind
VOP is to focus on the core business values that lead to stakeholders’ satisfac-
tion while prioritizing the product requirements; as indicated by Karl Wiegers
[31]. Each business value is given a weight based on the organization’s objec-
tives. Each stakeholder puts his estimate against each business value for each
requirement. All these input values are then consolidated together to produce
the requirements’ ranks.

2-2 REQUIREMENTS MANAGEMENT TOOLS

Requirements management tools are designed to help improve the software devel-
opment process through providing many features to ensure higher product quality.
There are a number of commercial Requirements Management (RM) tools current-
ly existing in the market [12, 14] and others identified in the research literature [21].
We will refer to Borland CaliberRM and ReleasePlanner as two examples of these
tools that have been used in our research. Our proposed criteria-based framework
manages not only requirements over the product life cycle as CaliberRM but it also
provides the product manager with a complete release plan. The generated release
plan identify the contents for each release based on the stakeholders viewpoints for
the different aspects affect each requirement like importance, implementation cost,
requirement technical risk, relative impact and market-related aspects. The cri-
teria-based framework handling different requirements structures like flat struc-
ture which is only supported by ReleasePlanner and also hierarchical structure.
This feature makes our proposed framework capable of dealing with require-
ments in different abstraction levels as described in the previous sections.

2-2-1 CaliberRM

CaliberRM provides a central and secure repository for all the product requirements.
One of the major features of CaliberRM is that it has an open architecture that per-
mits requirements to be linked and traced across the product lifecycle. It also sup-
ports requirements prioritization based on value/cost criteria for each requirement
[6]. It permits web-based requirements management and provides means for com-
munication among the project team.

2-2-2 ReleasePlanner

ReleasePlanner facilitates planning and prioritization of projects taken into con-
sideration the resource capacities in addition to the stakeholders opinions. This
will help decision makers to optimize their release planning through resource
availability and stakeholders’ satisfaction. It also enables the decision makers to

33

Mohamed et alCriteria-Based Framework

develop their own scenarios and perform what-if analysis as means of develop-
ing strategies to overcome organizational limitations [28].

3- RATIONALE AND RESEARCH TECHNIQUES

3-1 RATIONALE

The rationale behind developing a new software product management frame-
work arises from the need for having an automated mechanism that enables
a product manager to handle the different challenges he faces throughout the
product life cycle [22]. These challenges can affect the product success [16], as
indicated by the Standish Group Chaos Report, which is an annual survey of the
successes and failures on IT projects [30]. Examples of these challenges are:

•	 How to identify the criteria on which requirements are prioritized within
the product releases.

•	 How to best allocate the resources over the product release to be able
to satisfy the stakeholders requirements.

•	 How to balance between the different stakeholders’ opinions throughout
the prioritization process.

•	 How to handle requirements volatility and the need for re-planning to
satisfy the stakeholders.

•	 How to trace the requirements specifications through the different re-
lease phases.

•	 How to identify the requirements interdependency and inter-relation-
ships.

•	 How to provide accurate estimates throughout the product life-cycle.

These challenges provide a starting point for introducing a group of new innovative
ideas for tackling them throughout the product life cycle and making the decision
making process more easier. Examples of these innovative ideas are:

•	 Use not only the perceived importance to the stakeholder and antici-
pated implementation cost criteria in identifying the priority of the re-
quirement, but also through using technical risk, relative impact and
market-related aspects criteria. This mechanism makes this framework
differ from other corresponding frameworks and requirements manage-
ment tools that depend on using only value/cost criteria in the process
of requirements prioritization. This way our framework gets the effect of
the different factors and criteria affect requirements while identifying the
best release requirements.

34

Int.J. of Software Engineering, IJSE Vol.3 No.1 January 2010

•	 Support the PM with different resource allocation models to identify the
best candidate based on the release case will enable him to best allo-
cate the resources over the product releases.

•	 Provide a mechanism for the different stakeholders to be able to enter
their viewpoints for each requirement without any conflicts. The mecha-
nism will also balance between the different stakeholders’ viewpoints
based on the stakeholder weight.

•	 Provide the PM and stakeholders with an easy way to enter all of the
necessary and required information for each requirement; making the
requirement details clear and narrow down the volatility risks.

•	 Use a traceability matrix to link between the requirements specifications
and source code; facilitating detection of any faults as early as possible
in the release life cycle.

•	 Have a new mechanism to detect requirements’ interdependency and
relationships among them through post and pre condition features; this
helps much in distributing the requirements over the product releases in
a way that minimize the rework cost and enhance the product through-
put.

•	 Provide a new technique to estimate the required development effort
for each requirement through using a development template and a risk
assessment. This enables the PM to accurately estimate the required
effort and efficiently manage the product resources.

Our main contribution in this paper is the design of a new prioritization algorithm
that gets benefit from both Hierarchical Cumulative Voting (HCV) and Value-Ori-
ented prioritization techniques. Integrating the strengths of both prioritization algo-
rithms makes the new proposed algorithm more powerful in handling the prioritiza-
tion process efficiently because it incorporates multiple dimensions while selecting
the best candidate requirements. This new algorithm acts as the main core for the
Criteria-Based framework. This framework integrates different other release plan-
ning features and methodologies that handle the different challenges faced by the
product manager throughout the product life cycle.

3-2 RESEARCH TECHNIQUES

The research methodology we followed for the conception of this framework is
described as follows:

•	 Literature review for the current and practical challenges for the soft-
ware product management from both business and strategic perspec-
tives [4, 8, 11, 17, 25, and 26].

•	 Field interviews and brainstorming sessions with highly qualified product
managers for the product management point of view, sales representa-

35

Mohamed et alCriteria-Based Framework

tives for the vendor point of view and general managers for the strategic
view.

•	 A prototype implementation for the framework based on the knowledge
gained from the previous points. The prototype features are mainly for
tackling different challenges faced by the product manager [2, 24, 33].

•	 Validation session with a group of the product managers using an exist-
ing product case study to identify the different points of strength and
weakness on the implemented framework.

Gathering feedbacks from the different parties based on the prototype practice
to be the initiative for the future work.

4- FRAMEWORK ARCHITECTURE

4-1 PRODUCT MANAGEMENT HIERARCHY

The basic architecture for the proposed framework is based on the artifacts of the
product management hierarchy: each product has a release cycle that consists of
past, current and future releases. Each release consists of a group of selected re-
quirements identified based on the stakeholders’ input values for each requirement
(these values reflect the importance of each requirement in terms of associated an-
ticipated cost, market-related aspects, technical risk, relative impact and perceived
importance to the stakeholder). Finally the basic building block for each release is
the requirement which adds a technical or functional value to the whole product [1].

4-2 ARCHITECTURE DETAILS

As indicated from the previous sub-section, there are three main layers for the prod-
uct management hierarchy. We built our framework based on this artifact as (shown
in figure 1). The details for each layer will be described as follows.

4-2-1 Product road mapping layer

This layer focuses on the product high level processes. The product manager ini-
tially edits the stakeholders profiles and assigns a weight for each one on scale from
1 to 9 based on the importance of this stakeholder to the project (stakeholders who
have a critical impact on the product success will be given 9 while those who have
lowest impact will be given 1). Once each stakeholder has his profile enabled by the
product manager, he can start entering his view point for each product requirement
like ReleasePlanner tool. These viewpoints will be taken into account during “Re-
quirements identification” and “Requirements prioritization” processes. The product
manager will use the stakeholder requirements as an input while identifying the
product scope. Based on the product scope, the product manager will be able to
identify the product resources required to implement the product. Having the prod-
uct scope and resources defined, the product manager will be able to identify the
different product releases required for product completion [5].

36

Int.J. of Software Engineering, IJSE Vol.3 No.1 January 2010

4-2-2 Product road mapping layer

This layer focuses on those processes that manipulate the requirements over the
lifecycle. The product manager will be the source for gathering the input product
requirements from different stakeholders (to reflect client objectives), and Research
and Development (R&D) (to reflect technology-driven objectives). Once the product
manager consolidates the product requirements from different parties, he and other
stakeholders will be able to enter their input values for each requirement. These val-
ues will reflect the stakeholder viewpoint in terms of the different aspects affect each
requirement. The stakeholder will enter his opinion/viewpoint for each aspect (Cost,
Value, Risk, Impact and market-related aspects) through assigned weight from 1 to
9 such as 9 indicates highest importance and 1 indicates lowest importance. This
will be done using the different requirement attributes through the “Requirements
definition” process. The consistency of the defined requirements then will be exam-
ined through the “Requirement consistency check” process. Any consistency viola-
tions (e.g., start and end implementation dates check, unique identifier, allocated
resources) will be prompt to the user to fix. A valid list of requirements taken from
the consistency gateway will be examined for any correlation between the different
requirements through the “Requirements dependency check” process. The cor-
related list of requirements will be taken as an input for the “Build tractability matrix”
process. This process will be responsible to build the different links between the re-
quirement and implementation modules/components. The requirements list at this
phase will reflect the actual product objectives. Thus the product manager will be
able to estimate the effort required for each requirement through the “Requirements
effort estimation” process. This will help the product manager to efficiently allocate
the product resources through the release planning.

4-2-3 Release planning layer

This layer focuses on the processes that manage product releases. The product
manager will identify the release scope based on the final list of requirements taken
from the “Requirement management” layer and release list taken from the “Product
road mapping” layer. From the release scope which indicates the objectives from
each release, the product manager will then edit the release profile by adding more
details like; release planned total cost, number of resources, planned start and
end dates. These planned values will be monitored and tracked against the
actual values through the product execution phase to detect any overrun in both
time and cost as early as possible. Also both actual number of resources and
allocation percentage per resource will be monitored and tracked through the
product execution phase to give the product manager the ability to utilize best
the release resources and provide the highest throughput [35]. According to the
product releases definition and requirements definition, the prioritization proc-
ess will control how the requirements will be allocated over the different prod-
uct releases. Therefore the product manager will initially setup the prioritization
settings that control the prioritization process outcomes through the “Calibrate
prioritization” process. The ranks produced by the “Prioritization” process will
be used to identify the requirements contents for each product release. The

37

Mohamed et alCriteria-Based Framework

process of release planning is iterative [9]. Thus for any mismatch between the
output releases contents and stakeholder expectations, the prioritization param-
eters are recalibrated and the process reiterated till having a match between the
results and expectations [7].

Figure 1 Value Based Requirements Management Framework architecture

the process reiterated till having a match between the results and expecta-
tions [7].

Figure 1 Value Based Requirements Management Framework architecture

Value Based product management framework

Stake-
holder

View points

Require
ment

Product requirements list

Stake

-

hold-

PM

R&D

Release planning Release requirements for recalibration

Release scope Prioritization parameters Ranks

Release definition

Identify

release scope

Edit release

details

Calibrate

prioritization

parameters

Requirement

prioritization

Identify release

contents

Requirements management

Product requirements Valid requirements Correlated requirements Tractability
matrix

Requirement

definition

Requirements

consistency check

Requirements

dependency

detection

Build tractabili-

ty matrix

Requirement

effort estimation

Product road mapping
Needs Product scope Resource list Release

list

Edit stake-

holder profile

Identify

product scope

Identify

product re-

sources

Identify

product re-

leases

38

Int.J. of Software Engineering, IJSE Vol.3 No.1 January 2010

5- FRAMEWORK BASIC FEATURES

The basic features for the framework architecture (shown in figure 1) can be
summarized as follows:

1- Requirements identification feature through assigning a unique ID for each
requirement. This can be used to unambiguously refer to the requirement dur-
ing the product life cycle. Other requirement information like requirement name,
description, owner name who requested the requirement, requirement status
throughout the product life cycle, requirement type, start and end dates for ac-
tual implementation and importance weight (to show how it is important to the
stakeholder) can be all defined through the requirement “General” attributes.
These are all means to help stakeholders to get better management over the
information complexity.

2- Requirements dependency detection feature is enabled through the require-
ment pre and post conditions. Product manager can make any pair of require-
ments dependant on each other by having the pre-condition for one of the re-
quirement equal to the post-condition for the other one. The ability to detect the
dependency and correlation between requirements enables the product man-
ager to manage efficiently the release requirements because it’s seldom pos-
sible to have a release with all singular requirements, as indicated by a survey
of a group of organizations’ requirements repositories prove that only 20% of the
release requirements are independent [26] .

3- Requirements traceability feature between the source code modules and re-
quirements specification is defined through “Tractability” attributes. This feature
will enable the product manager to trace any missing development components
and help him monitor the implementation progress through the requirement
modules tab. A requirement is fully implemented if all the modules that imple-
ment the functionality of the requirement have a status of FINISHED. This will
enable the product manager to check why a certain feature in product under
development was changed or has not been fully satisfied [1].

4- Requirements estimation feature, through which the product manager will
be able to estimate the effort associated with each requirement by knowing the
different development modules that compose the requirement from the devel-
opment team. This way the product manager will be able to efficiently plan the
project schedule, review and negotiate the estimates from the product develop-
ment team.

39

Mohamed et alCriteria-Based Framework

Figure 2 Requirement estimate feature

Along with this feature the framework also provides the product manager with a
risk assessment for each requirement through a questionnaire maintained (Add/
Remove questions) by the product manager. Having requirement risk, value tak-
en from the risk assessment (shown in figure 2) and the different modules types
and complexities that compose the requirement as arguments to the estimate
process will make the estimated requirement effort reflect the best development
effort. This value will be taken as guidance through the product planning phase
[21].

5- Requirements maintainability feature through different criteria like cost, im-
portance, risk, impact and market-related aspects. This feature will enable the
stakeholder to identify the different types of costs, risks, impacts and market-
related aspects that influence each requirement and how much this type will
impact the requirement implementation. In this manner the product manager
along with other stakeholders will have the ability to control the different factors
and aspects that may affect the requirement implementation from their point of
view through assigning different weights for each criteria type.

6- Access control feature which controls the different access rights for the dif-
ferent stakeholders because product manager privileges differ from those of the

40

Int.J. of Software Engineering, IJSE Vol.3 No.1 January 2010

stakeholder’s since the product manager is the product owner and must have
full authority over the product. One of those privileges that only the product man-
ager has is the ability to maintain (Add/Remove) the stakeholder’s profile and
assign a weight on scale from 1 to 9 for each one based on how this stakeholder
is important to the project. Stakeholders will only have the privilege to enter their
input values for each requirement to be taken into consideration through the
requirements prioritization phase.

7- Resource pool feature, through which the product manager will enter the
product resources who will be assigned tasks through the entire product life
cycle since not all releases can have the same resources. By this means, the
framework gives the product manager the flexibility to assign different resources
to each product release based on the release needs.

8- Resource over release feature. This feature enables the product manager
to quantify the resource allocation percentage over the whole product release
based on the resource allocation type assigned to him. By this means, the
framework will provide the product manager with the ability to best utilize the
resources throughout the product life cycle.

9- Resource count per release feature. This feature supports the product man-
ager with the ability to monitor the current number of FTE (Full Time Equivalent)
resources over the whole product release and compare it against the planned
value to be able to take the proper corrective action.

10- Cost per release feature. This feature supports the product manager with
the ability to monitor the current release cost and compare it to the planned
value to be able to take the proper corrective action.

11- Constrains and assumption feature through which the stakeholders will be
able to assign different constrains and assumption to each requirement that will
be taken into consideration while prioritizing the requirements.

12- Requirement hierarchical feature that arises from the requirement tree
structure which provides the product manager with the look-and-feel of the re-
quirement parent/child relationships as (shown in figure 5). This feature makes
the ability to add, remove and modify the requirement a very simple task (just
highlighting the requirement in the tree structure). By this means the process of
maintaining (Add/Remove/Modify) the requirements tends to be very easy and
not time consuming.

13- Requirement tip feature that gives the product manager the flexibility to
know the requirement information like requirement name, client name, status,
start and end dates by just highlighting the requirement in the requirement tree.

14- Requirement query feature. This feature supports the product manager with
a utility to be able to use built-in queries to identify those requirements that sat-
isfy the selected query parameters. By this utility the product manager will be
able to retrieve easily the different information from the requirement repository

41

Mohamed et alCriteria-Based Framework

which will make the process of requirement management much easier.

15- Requirements consistency checking. This feature enables the product man-
ager to detect any inconsistencies in the input requirement information as early
as possible and avoid any misleading faults by guiding the stakeholder to the
correct information or process that he should follow [23].

16-Requirement prioritization feature which acts as the core engine for the
whole framework. It takes the inputs from the different stakeholders along with
the product manager and provides the best candidate set of requirements for
each product release [17]. The prioritization algorithm used in this process is the
HCV “Hierarchical Cumulative Voting” [3]. The idea behind HCV is basically the
same as behind CV “Cumulative Voting”; to use an open and straightforward
technique to quantify the importance of requirements based on multiple criteria
like Importance, cost, risk, impact and market-related aspects. As in CV, the
prioritization is conducted by distributing points between requirements. How-
ever, when prioritizing with HCV, not all requirements are prioritized at the same
time. Instead, prioritizations are performed at different levels of a hierarchy, and
within different blocks of requirements in the hierarchy. The strengths of this
technique will increase as the number of requirements grows in comparison to
techniques like CV and techniques based on “flat” pair-wise comparisons. When
the number of requirements grows, the need for a structured approach becomes
more essential. HCV provides that structure by using natural relationships be-
tween requirements to perform the prioritization in a number of consecutive
steps, and hence limits the number of requirements prioritized at a time [20].

17- Criteria selection feature. This feature provides the product manager with
the flexibility to control which criteria (Importance, Cost, Risk, Impact, and Mar-
ket-related aspects) will be taken into consideration while performing the re-
quirements prioritization. The product manager by this feature will be able to
understand how much each criterion affects the prioritization results and in turn
the release candidate requirements [30].

18- Percentage per requirement feature. This feature provides the product man-
ager with the ability to identify the effect in terms of percentage on how each
requirement affects the selected feature (Importance, Cost, Risk, Impact and
Market-related aspects).

19- XML save and restore feature. By this feature the product manager has the
ability to save/restore the whole requirement tree structure, all the stakeholder
profile information, and release details along with the resource pool data and
all the other prioritization and feature settings. The framework will also have the
ability to automatically load the last tree structure and settings before exiting the
framework. This will make the save/restore process much faster.

20- Prioritization options feature. By this feature the product manager can con-
trol the different prioritization parameters. These parameters (shown in figure 3)
are designed to control the following parameters:

42

Int.J. of Software Engineering, IJSE Vol.3 No.1 January 2010

Figure 3 Requirement prioritization options

•	 To control how the different criteria like importance, cost, risk, impact and
market-related aspects will influence the prioritization process through
assigning different weights to each criteria.

•	 To identify which requirement level will be used through the prioritiza-
tion process since, as indicated in the previous paragraph, the HCV
prioritization is done at a different level of the hierarchy. The default is to
prioritize the leaves which are at level zero.

•	 To enable/disable the requirements dependency checking, because,
once this option is selected, the prioritization process will take into ac-
count the dependency between requirements (e.g. any two dependant
requirements will be given the same rank otherwise this will be neglect-
ed and all the requirements are treated as independent).

•	 To enable/disable constrains checking while prioritizing the require-
ments. If this option is selected, the requirement constraints will be
dominant over the requirement assigned value and will be taken into

43

Mohamed et alCriteria-Based Framework

consideration while selecting the best candidate release requirements,
otherwise the constrains will be neglected.

•	 To select the resource allocation model which will be used over the re-
lease and which is used also to identify if a certain resource is free or busy
through the release. Free allocation model refers to that model on which
each resource is assigned to only one task over the whole release. There-
fore it will be always busy and allocation percentage for him will be always
100%. Full allocation model refers to that model on which the resource can
be assigned to different tasks per release but only one task at a time, so,
once the resource finishes the assigned task, the product manager can as-
sign another task to him within the same release and hence the allocation
percentage will depend on the percentage of his time to the total release
time allocated through tasks.

•	 To control the resource number of working hours per day. This option
can be used while calculating the resource allocation percentage over
the whole release time.

•	 To control the resource number of days per month. This option can
be used while calculating the resource allocation percentage over the
whole release time.

To identify the weight for each criteria (Cost, Risk, Market-related aspect, Impact)
and feature, such as a “Performance” impact feature. This option can be used to
control the effect of each feature on the whole criteria.

6- CASE STUDY

6-1 Case description

In order to show the practical benefits from our proposed framework, an indus-
trial case study has been analyzed. The case study is related to the project for
evaluation and implementation of a new software system for low and medium
energy physics experiments called GO4 in GSI systems. The project will cover
data acquisition, data analysis, and setup control in on-line and off-line mode.
The new object oriented system will be available on various platforms like UNIX
and Windows NT, and it will also be based on software currently available like
CERN software packages ROOT or LHC++ but it would require several exten-
sions to handle specific user’s requirements of the low and medium energy
physics experiments.

A stepwise process for the new system development based on the require-
ments from seven stakeholders will be illustrated in the following paragraphs.
The stakeholders in this project have different importance to the organization
and to the whole project. This relative importance will be controlled through

44

Int.J. of Software Engineering, IJSE Vol.3 No.1 January 2010

assigned weights described in each stakeholder profile. The product develop-
ment is divided into three releases for six months each and with a total of fifteen
resources per release. The steps will show the whole process starting from
editing the release details and ending with the identification of the each product
release best candidate requirements. The number of requirements for the case
product is around one hundred requirements that entail all the product phases.
The criteria values for each requirement have been requested from each stake-
holder. These values reflect each stakeholder view point in terms of weighted
criteria aspects. These aspects will control the final requirement priority from the
stakeholder point of view

6-2 Case analysis

In the following paragraphs, we will provide a detailed process of how the best
release candidate requirements have been identified based on the stakehold-
ers’ inputs.

•	 Step 1: edit the product releases details as (shown in figure 4), by add-
ing the product name, release name, release number, number of re-
sources, release planned start and end dates, total release cost and
number of resources. In our case we have three consecutive releases,
started by the “Alpha/1.1” then “Beta/1.2” and ends with the “Release
Candidate/1.3” which is equivalent to the final product release. The Al-
pha release had a planned start date for July 2006, Beta release had
a planned start date for January 2007 and Release Candidate had a
planned start date for July 2007. The fifteen resources who allocated for
each release are distributed as follows: eight development engineers for
the coding and implementations tasks and separated into two groups,
two QA engineers for testing and verifications tasks such that one al-
located for each group of developers, one business analyst for busi-
ness case identification, one software architect for product architecture
tasks, two team lead engineers for mentoring and supervision tasks so
that one is allocated for each group of developers and a product man-
ager.

45

Mohamed et alCriteria-Based Framework

Figure 4 Step 1: Edit release details

•	 Step 2: edit product requirements as (shown in figure 5), the product
manager will add the requirements details like requirement name, type,
description, client name, requirement number, planned start and end
dates, risks, impact, aspects, costs, constraints, assumptions, mod-
ules, pre and post conditions and resources information. The product
manager along with other stakeholders will enter their opinions through
weights for each criteria (e.g., Importance, Cost, Risk, Impact, Market-
related aspects) aspect for each requirement on scale from 1 to 9. Each
stakeholder can enter different aspects for each criteria based on his
point of view for each requirement. He will also need to enter the as-
sociated weight on scale from 1 to 9. These criteria aspects weights for
each requirement will control the final requirement priority based on the
weight assigned to each stakeholder on scale from 1 to 9 that reflects
his relative importance to the organization and the project. The product
manager will also have the ability to estimate the development effort
required for each requirement as (shown in figure 2). All these require-
ments information will be used while prioritizing the best candidate for
each release based on the total release cost, planned start and end
dates and number of resources.

46

Int.J. of Software Engineering, IJSE Vol.3 No.1 January 2010

Figure 5 Step 2: Edit requirements details

•	 Step 3: prioritize input requirements. The results from this step as (shown
in figure 6) will depend on each requirement’ details, total release cost,
planned start and end dates and number of resources. The product
manager should initially set the prioritization options as (shown in fig-
ure 3) to setup some prioritization parameters like resource allocation
model, dependency enabled option, constraint enabled option, resource
number of hours per day, resource number of days per month, general
criteria weights for the relative importance of each requirement criteria
of risks, market-related aspects, impacts, cost and importance [32]. For
this case study, the product manager set the resource allocation model
to “Full allocation” to best utilize the resources over the product life cy-
cle. Both dependency-enabled and constraint-enabled options are set
to take the effect of both requirements interdependency and constraints
while prioritizing the requirements. Resource number of hours per day
is set to eight hours and number of days per month to 22 days. Table 1
will show the different criteria weights as agreed by the product stake-
holders. These weights will control the share by which each criterion will
contribute in calculating the requirement priority.

47

Mohamed et alCriteria-Based Framework

Table 1 General criteria weights

Criteria Importance Risk Cost Impact Aspects

Weight 9 2 7 3 6

•	 Step 4: parameters calibration to adjust the prioritization parameters to
get the best results that match with the stakeholder expectations. This
can be handled by adjusting both the core business values weights for
the different criteria (to reflect the relative importance of business value)
and also through adjusting the general weights (shown in table 1) of the
different criteria types.

 	

Figure 6 Step 3: Prioritize requirements

48

Int.J. of Software Engineering, IJSE Vol.3 No.1 January 2010

7- CONCLUSION

In this paper, we have presented work in progress in our research product in
which we are developing a framework for managing software product develop-
ment. This framework evaluates and selects the best candidate requirements
not only based on the value/cost criteria as done in CaliberRM and Release-
Planner but it also takes into account the effect of Impact, Risk and market-
related aspect criteria. This provides the product manager with a utility to take
all the aspects that affect the requirement into account while selecting the best
candidate requirements for product release and it helps the product manager
handle the different release planning challenges over the product life cycle. The
proposed framework can balance between the different stakeholders priorities
and incorporate the different viewpoints altogether while selecting the differ-
ent releases requirements. It also facilitates to deal with complex systems with
large number of requirements with higher complexity; this was too hard to be
handled with the ad-hoc methodologies. The framework takes the different re-
sources constraint as budget, time and resources into account while managing
the product releases. It also helps the product manger not to spend more time
in re-planning activity which is the nature of the evolving systems.

Our future work targets are twofold: first is to overcome the different drawbacks
we have in our framework like, performance enhancement for those products
have more than 500 requirements. Enhancing the calibration process for the cri-
teria weights to get the best match is necessary because the current process re-
quires a lot of iterations. Second, plan on adding more features to the framework
to target the different challenges of managing software product development in
current market-driven environments. One of these features we intend to add is
to enable the stakeholder to develop their own scenarios and develop what-if
analysis as a means of developing strategies. The other feature we would like to
add is the generation of a set of alternative release plans that reflect the optimal
solutions with respect to a weighted objective composed of value, cost, risk and
profit. By this means the proposed Criteria-Based Software Product Manage-
ment Framework, which integrates several software product management ar-
eas, takes the advantage of the value-based approach of software engineering
to ensure stakeholder satisfaction and product success [10].

ACKNOWLEDGMENT

The authors wish to thank Hewlett Packard Corporation for supporting our re-
search with a lot of resources that help us achieve our research objectives.

The authors would like also to thank the anonymous reviewers for their valuable
comments and suggestions.

49

Mohamed et alCriteria-Based Framework

REFERENCES

[1]	 L. Almefelt, “Requirements-Driven Product Innovation – Methods and
Tools Reflecting Industrial Needs”, Chalmers University of Technology,
Ph.D. Thesis Series No. 2400, Department of Product and Production
Development, Chalmers University of Technology, Sweden, 2005.

[2]	 P. Berander, K. Khan, , and L. Lehtola, “Towards a Research Framework
on Requirements Prioritization”, Proceedings of the Sixth Conference on
Software Engineering Research and Practice in Sweden(SERPS’06),
Umeå, Sweden, pp. 39-48, 2006.

[3]	 P. Berander, and P. Jönsson, “Hierarchical Cumulative Voting (HCV) -
Prioritization of Requirements in Hierarchies”, accepted for publication in
International Journal of Software Engineering and Knowledge Engineering
(IJSEKE) - Special Issue on Requirements Engineering Decision Support,
World Scientific Publishing Company, Singapore, pp. 76-84, 2006.

[4]	 P. Berander, and A. Andrews, “Requirements Prioritization”, in Engineering
and Managing Software Requirements, ed. Aurum, A. and Wohlin, C.,
Springer Verlag, Berlin, Germany, pp. 69-94, 2005.

[5]	 P. Berander, “Prioritization of Stakeholder Needs in Software Engineering -
Understanding and Evaluation”, Blekinge Institute of Technology Licentiate
Series No. 2004:12, Department of Systems and Software Engineering,
Blekinge Institute of Technology, 2004.

[6]	 Borland CaliberRM 2007 main features URL: http://www.borland.com/us/
products/caliber/rm.html.

[7]	 P. Carlshamre, B. Regnell, “Requirements Lifecycle Management and
Release Planning in Market-Driven Requirements Engineering Processes”,
11th International Workshop on Database and Expert Systems Applications
(DEXA’00), p. 961, 2000.

[8]	 A. Dver, , “Software Product Management Essentials – A Practical Guide for
Small and Mid-sized Companies”, Anclote Press, Tampa, FL, 2003.

[9]	 D. Greer, and G. Ruhe, “Software Release Planning: an Evolutionary and
Iterative Approach”, Information and Software Technology, 46(4), pp. 243-
253, 2004.

50

Int.J. of Software Engineering, IJSE Vol.3 No.1 January 2010

[10]	 R. Faulk, D. Harmon, and D. Raffo, “Value- Based Software Engineering
(VBSE): A Value-Driven Approach to Product-Line Engineering”,
Proceedings, First International Conference on Software Product Line
Engineering, pp. 205-223, 2000.

[11]	 R. Glass, I. Vessey, and V. Ramesh, “Research in Software Engineering:
an Analysis of the Literature”, Information and Software Technology 44, pp.
491– 506, 2002.

[12]	 S. Heinonen, “Requirements management tool support for software
engineering in collaboration”, University of Oulu, Department of Electrical
and Information Engineering. Master’s Thesis, 2006.

[13]	 N. Hill, J. Brierly, and R. MacDougall, “How to Measure Customer
Satisfaction”, Gower Publishing, Hampshire, England, 1999.

[14]	 M. Hoffmann, N. Kühn, M. Weber, M. Bittner, “Requirements for Requirements
Management Tools”, In: 12th IEEE International Requirements Engineering
Conference (RE´04) pp.301-308, 2004.

[15]	 A. Kappel, “Perspectives on Roadmaps: How Organizations Talk About
the Future”, Journal of Product Innovation Management, 18(1), pp. 39-50,
2001.

[16]	 L. Karlsson, A. Dahlstedt, B. Regnell, J. Natt och Dag, and . Persson,
“Requirements Engineering Challenges in Market- Driven Software
Development - An Interview Study With Practitioners”, Accepted for
publication in Information and Software Technology: Special Issue on
Understanding the Social Side of Software Engineering, pp. 588-604, 2007.

[17]	 J. Karlsson, “Software Requirements Prioritizing”, Proceedings of the
Second International Conference on Requirements Engineering (ICRE’96),
Colorado Springs, CO, pp. 110-116, 1996.

[18]	 J. Karlsson K. Ryan “A Cost-Value Approach for Prioritizing Requirements”,
IEEE Software, 1997, vol. 14, No. 5, pp 67 – 75, 1993.

[19]	 L. Karlsson, Björn Regnell, “Introducing tool support for retrospective
analysis for release planning decisions”, Proceedings of the 7th International
Conference on Product Focused Software Process Improvement
(PROFES’06), Amsterdam, the Netherlands, June 2006, pp. 19-33, 2006.

[20]	 L. Lehtola, and M. Kauppinen, “Suitability of Requirements Prioritization

51

Mohamed et alCriteria-Based Framework

Methods for Market-Driven Software Product Development”, Software
Process Improvement and Practice (SPIP), 11(1), pp. 7-19, 2006.

[21]	 L. Lehtola, M. Kauppinen, and S. Kujala, “Linking the Business View to
Requirements Engineering: Long-Term Product Planning by Roadmapping”,
Proceedings of the, 13th International Conference on Requirements
Engineering, Paris, France, pp. 439-443, 2005.

[22]	 J. Nicholas, “Project Management for Business and Technology - Principles
and Practice”, 2nd Edition, Prentice Hall, Upper Saddle River, NJ, 2001.

[23]	 N. Nurmuliani, D. Zowghi, and S. Powell, “Analysis of Requirements
Volatility during Software Development Lifecycle”, Proceedings of the 2004
Australian Software Engineering Conference (ASWEC ‘04), Melbourne,
Australia, pp. 28-37, 2004.

[24]	 F. Moisiadis, “The fundamentals of prioritizing requirements”, Proceedings
of the Systems Engineering, Test and Evaluation Conference, Sydney,
NSW, Australia, pp 108–119, 2002.

[25]	 PMBOK, A Guide to the Project Management Body of Knowledge, first ed.,
Project Management Institute, Pennsylvania USA, 2001.

[26]	 P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell and J. Natt och Dag,
“An industrial survey of requirements interdependencies in software product
release planning”, Proceedings of the 5th IEE international Symposium on
Requirements Engineerin, PP. 84-91, 27-31, August 2001.

[27]	 S. Robertson and J. Robertson, “Mastering the Requirements Process”,
Addison-Wesley, Harlow, England, 1999.

[28]	 G. Ruhe and A. Ngo-The, “Hybrid Intelligence in Software Release
Planning,” International Journal of Hybrid Intelligent Systems, Vol. 1(2004),
pp. 99-110, 2004.

[29]	 R. Smith, J. Azar, and D. Cordes, “A Value-Oriented Approach to
Requirements Prioritization”, tech. report, Dept. of Computer Science, Univ.
of Alabama., vol. 24, no. 1, pp. 32-37, 2007.

[30]	 Standish Group, CHAOS Report, (2007): www.standishgroup.com

[31]	 Wiegers K., “First Things First: Prioritizing Requirements”, Software
Development, vol. 7, no. 9, www.processimpact.com/pubs.
shtml#requirements, 1999.

52

Int.J. of Software Engineering, IJSE Vol.3 No.1 January 2010

[32]	 C. Wohlin, and A. Aurum, “Criteria for Selecting Software Requirements
to Create Product Value: An Industrial Empirical Study”, in Value-based
Software Engineering, ed. S. Biffl, A. Aurum, B. Boehm, H. Erdogan, and P.
Grünbacher, Springer Verlag, Berlin, Germany, pp. 179-200, 2006.

[33]	 C. Wohlin, and A. Aurum, “What is Important when Deciding to Include a
Software Requirement in a Project or Release?”, Proceedings of the 2005
International Symposium on Empirical Software Engineering (ISESE 2005),
Noosa Heads, Australia, pp. 246-255, 2005.

[34]	 I. van de Weerd, S. Brinkkemper, S. Nieuwenhius, R. Versendaal, J. and L.
Bijlsma, “On the Creation of a Reference Framework for Software Product
Management: Validation and Tool Support”, Proceedings of the First
International Workshop on Software Product Management, Minneapolis/St.
Paul, MN, pp. 3-12, 2006.

[35]	 V. der Hoek, “Software release management”, Proceedings of the Sixth
European Software Engineering Conference together with the Fifth ACM
SIGSOFT Symposium on the Foundations of Software Engineering.
Springer: Heidelberg, Germany, pp. 159–175, 1997.

