
69

A Framework for Instituting Software Metrics Haddad et al

A Framework for Instituting Software
Metrics in Small Software Organizations

Hisham M. Haddad, Nancy C. Ross, and Donald E. Meredith
Computer Science Department, Kennesaw State University (USA)

E-mail: hhaddad@kennesaw.edu

ABSTRACT

The role of metrics in software quality is well-recognized; however, software
metrics are yet to be standardized and integrated into development practices
across the software industry. Literature reports indicate that software
companies with less than 50 employees may represent up to 85% of the
software organizations in several countries, including the United States. While
process, project, and product metrics share a common goal of contributing to
software quality and reliability, utilization of these metrics has been minimal.
While the well-known process models may not be ideal in a relatively small
setting, some of the large process models are being scaled down while,
simultaneously, new models are being developed specifically for smaller
software organizations. Software metrics have been studied for years, and
there are many options available for metrics utilization, either within or outside
of a process improvement framework, regardless of the size of the setting.
Under this work, case studies and industrial reports on the use of metrics in
software organizations were gathered and analyzed. This work examines the
practices of metrics in the software industry with emphasis on small
organizations, explores the challenges and benefits of using software metrics
in small organizations, and outlines a practical framework based on the
Goal/Question/Metric paradigm for instituting metrics programs in small
software organizations.
Keywords: Cost of Defects, Framework for Software Metrics, Software Metrics
Challenges, Software Metrics in Small Organizations.

1- INTRODUCTION

It is yet to be widely recognized that metrics are valuable tools for a software
organization. They provide measurement about schedule, work effort, and
product size among many other indicators. The more they are utilized, the
more effective and productive the organization becomes. They also provide
better control over projects and a better reputation for the organization and its
business practices. Software metrics are utilized during the entire software
development life cycle. Gathered data is analyzed and evaluated by project
managers and software developers. The practice of metrics involves Meas-
ures, Metrics, and Indicators. A Measure is a way to appraise or determine by
comparing to a standard or unit of measurement, such as the extent, dimen-
sions, and capacity, as data points. The act or process of measuring is re-

70

Int.J. of Software Engineering, IJSE Vol.5 No.1 January 2012

ferred to as Measurement. A Metric is a quantitative measure of the degree to
which a component, system, or process possesses a given characteristic or
attribute, and an Indicator represents useful information about processes and
process improvement activities that result from applying metrics, thus, de-
scribing areas of improvement.

The literature indicates that, throughout the world, most software applications
are developed by small organizations ranging from one to fifty employees.
Such organizations represent about 85% of software organizations in several
countries, including the United States [1,2,3,4]. Since small software organiza-
tions make up such a large percentage of all software companies in the world,
it follows that they have had a large influence in creating the software crisis
that has existed since software development began. The software crisis states
that software projects are characteristically behind schedule and over-budget,
the software produced is difficult to maintain and is of low quality and efficien-
cy, and most large software products are never used or are only partially used
because customers’ requirements are not fully met. Software process im-
provement and a program of metrics would help to lessen the effects of the
software crisis by guiding a small organization to produce higher quality soft-
ware.

The major objective for deploying a software metrics program is to improve
the software development process. Historical data gained from the collection
of metrics from all the projects developed by an organization is a wealth of
information that will aid in the estimation and planning of future projects. Al-
though small organizations have many resource challenges when attempting
to implement a software metrics program, it is possible for an effective mea-
surement program to be developed on a smaller scale. Managers and devel-
opers must determine what to measure, how to measure it, and how to trans-
form this raw measurement data into information that can assist the organiza-
tion in achieving its goal of producing better software [5].

Small software organizations face a wide range of challenges as far as col-
lecting data and utilizing software metrics. Initial upfront investment is the
most challenging of all as the cost of deployment and personnel are great;
however, managers and developers alike are well aware of the necessity to
strive to achieve quality standards that eventually lead to lower project cost
and desired benefits that may be gained in the long term [6]. Another difficulty
is staff participation. Managers and developers understand the high-level
goals of software process improvement and metrics programs but often are
unwilling to expend the necessary effort for various reasons, such as the fear
of consequences, concerns regarding assessment of personal performance,
the perception that metrics do not accurately represent their development me-
thodology, and misrepresentation of the amount of effort they put into their
work [7].

Can the small software organization overcome these challenges? How can an
efficient process be created that will produce valid, actionable information

71

A Framework for Instituting Software Metrics Haddad et al

while at the same time getting all of the “regular” work done, and how can
management be convinced that this is a long-term win for everyone? Why
should the small software organization take the time and effort to implement a
software metrics program? This work builds on previous work [8,9,10]. It ex-
plores these questions and presents a four-step framework to help the small
organization take the first steps toward implementing a productive metrics
program. Available options and opportunities for each step are also pre-
sented.

2- STATE OF METRICS

The area of software measurement has been highly active for several dec-
ades. As a result, there are many commercial metrics tools available on the
market. Such affordable metrics can be the starting point for small organiza-
tions; however, much more work is needed to standardize, validate, and inte-
grate metrics into software practices. This work is motivated by the cost of
defects, measurable characteristics of software, and common metrics availa-
ble for small organizations.

2-1 COST OF DEFECTS

To present a convincing argument regarding the benefits of using metrics, one
needs to highlight the incentives and payoff. William T. Ward [11] describes
Hewlett-Packard’s (HP’s) “10 x software quality improvement” initiative. The
author uses data from a software metrics database and an industry profit-loss
model to develop a method to compute the actual cost of software defects.
The database is an important element of HP’s software quality activities and is
a valuable source for different tasks such as quality status reporting, resource
planning, scheduling, and calculation of cost defects. Sources of data include
product comparisons, analysis of source code size and complexity, defect
logging, project post-mortem studies, and project schedule and resource
plans.

The Software Quality Engineering Group follows definite steps to discover,
correct, and retest a defect during testing activities (integration, system,
and/or acceptance). The estimated effort here is about 20 hours, and it
represents the average effort for discovering and fixing a defect. This effort is
calculated using data points from multiple projects that were tracked with the
software quality database. Defect cost can also be determined per project or
phase, and cost can be weighted based on programmer productivity or prod-
uct code size. For instance, the following formula shows the cost per defect
that is discovered and fixed during the integration through the release phases
of a project.

Software Development Cost = SDRC + PL
where:

72

Int.J. of Software Engineering, IJSE Vol.5 No.1 January 2012

SDRC (Software Defect Rework Cost) is determined by the amount of
effort and expense required to find and fix defects during the integra-
tion through release phases and
PL (Profit-Loss) is the revenue loss caused by lower product sales
throughout the entire post release lifetime.

To illustrate, a product has about 110 software defects found and fixed during
testing. Each defect requires 20 engineering hours to identify and fix. The total
work effort is 2200 hours. At $75/hour, SDRC is $165,000, and the rework
cost per defect is $1500. These expenses could be saved had metrics been
used to mitigate those defects. In addition, it should be noted that the other
calculation for defect cost is product profit-loss. Here, missed market-window
opportunities result in loss of sales, profits, and competitiveness. This
illustrates typical losses that result from the lack of metrics utilization.

2-2 MEASURABLE CHARACTERISTICS

Unlike software engineering, other disciplines capitalize on the power of quan-
titative methods to measure their processes and activities. Based on this
statement from Tom DeMarco [12] - “You can’t control what you can't meas-
ure”, these disciplines apply measurements to gain better control of their
projects and quality of products. Although software engineering is a new and
evolving discipline, experts have proposed quantitative methods applicable to
all aspects of software projects with the goal of achieving high quality prod-
ucts. These methods are related to different measurable characteristics of
software applications. Measurement-related activities include the following:

Cost and effort estimation: Estimation models [13] help to better plan and ex-
ecute software projects. One factor that plays into the success of applying
estimation models is the experience of the organization in predicting the effort
and cost of new software systems. Mathematical models, such Boehm’s CO-
COMO [14], Putnam’s SLIM [15], and Albrecht’s Function Points [16], can be
used.

Productivity measures: Productivity models focus on the human side of a
project. A key factor in accurately determining productivity is gathering suffi-
cient information about the productivity of an individual (or a team) in different
scenarios, such as the type of project, team structure, skills and backgrounds,
tools, and environment. Measures and metrics for assessing the human side
of the project are more challenging to develop and apply than other measures
and metrics [5].

Data collection: Data collection is an important discipline, requiring diligence
and careful implementation. Although it has obvious benefits for developing
measures and metrics, team members often dislike it. The common percep-
tion among some team members is that data collection leads to an uneasy
feeling of being “under pressure” and “at risk” as collected data can be nega-

73

A Framework for Instituting Software Metrics Haddad et al

tively used in performance evaluations. The real risk here is that inaccurate
data can result in metrics that provide false assessments.

Quality assessment: This activity covers different measures including efficien-
cy, reliability, flexibility, portability, usability, and correctness as well as many
other measures. Standards that define quality in terms of specific project
goals are needed. Here and with historical data, objectives (in terms of meas-
ures) should be achieved or exceeded in order to meet desired quality stan-
dards. Although quality assessment is often applied early in the life cycle, it
covers, along with “umbrella activities”, the entire life cycle [5].

Reliability models: Even though reliability is seen as a quality attribute, reliabil-
ity assessment models are more related to software failures and are mostly
applied during testing. The models work well when it is possible to monitor
and trace failures during a test or operation. Many quality models use reliabili-
ty as a factor, and the concept of reliability weighs much as far as the percep-
tion of quality.

Other activities include Performance evaluation for optimal solutions, Struc-
ture and complexity, Capability maturity assessment, Management by metrics,
and Evaluation of methods and tools. These activities are becoming an impor-
tant part of Software Engineering as each activity leads to the development of
software metrics, some of which evolve into assessment models.

2-3 COMMON METRICS

Many commercially-available software metrics products have been developed
over the years. As they vary in complexity and sophistication, many products
are “affordable” for resource-constrained organizations. Process, Project, and
Product are three common categories that offer a variety of metrics for small
organizations.

Process Metrics: These metrics focus on software development and mainten-
ance. They are used to assess people’s productivity (known as private me-
trics), productivity of the entire organization (known as public metrics), and
software process improvement. Process assessment is achieved by measur-
ing specific attributes of the process, developing a set of metrics based on the
identified attributes, and, finally, using the metrics to provide indicators that
lead to the development of process improvement strategies. Private metrics
are designed to help individual team members in self-assessment allowing an
individual to track work tasks and evaluate self-productivity. Public metrics, on
the other hand, help evaluate the organization (or a team) as a whole, allow-
ing teams to track their work and evaluate performance and productivity of the
process. A good example is a team’s effectiveness in eliminating defects
through development, detecting defects through testing, and improving re-
sponse time for fixes.

74

Int.J. of Software Engineering, IJSE Vol.5 No.1 January 2012

Project Metrics: Project metrics are tactical and related to project characteris-
tics and execution. They often contribute to the development of process me-
trics. The indicators derived from project metrics are utilized by project man-
agers and software developers to adjust project workflow and technical activi-
ties. The first application of project metrics often occurs during the cost and
effort estimation activity. Metrics collected from past projects are used as the
basis from which effort and time estimates are made for new projects. During
the project, measured efforts and expended time are compared to original
estimates to help track how accurate the project estimates were. When the
technical work starts, other project metrics begin to have significance for dif-
ferent measures, such as production rates in terms of models created, review
hours, function points, and delivered source code lines. Common software
project metrics include:

 Order of growth: This metric is a simple characterization of an algorithm‘s
efficiency allowing comparison of the relative performance of alternative
algorithms without being focused on the implementation details.

 Lines of code: The physical type is a count of lines including comment and
blank lines (not to exceed 25% of all lines of code). The logical type is a
count of the number of "statements" tied to a specific programming lan-
guage.

 Cyclomatic complexity: This metric measures the application complexity
and describes its flow of control.

 Function points: This metric reflects functionalities relevant to (and recog-
nized by) the end user. It is independent of implementation technology.

 Code coverage: This metric determines the statements in a body of code
that have been executed through a test run and those statements that
have not been executed through a test run [17].

Other project metrics include coupling, cohesion, requirements size, applica-
tion size, cost, schedule, productivity, and the number of software developers.

Product Metrics: These metrics focus on measuring key characteristics of the
software product. There are many product metrics applicable to analysis, de-
sign, coding, and testing. Commonly-used product metrics include:

 Specification metrics: These metrics provide an indication of the level of
specificity and completeness of requirements.

 Size metrics: These metrics measure the system size based on information
available during the requirements analysis phase.

 Architectural metrics: These metrics provide an assessment of the quality
of the architectural design of the system.

 Length metrics: These metrics measure the system size based on lines of
code during the implementation phase.

 Complexity metrics: These metrics measure the complexity of developed
source code.

75

A Framework for Instituting Software Metrics Haddad et al

 Testing metrics: These metrics measure the effectiveness of conducted
tests and test cases.

Other product metrics focus on design features, quality attributes, code com-
plexity, maintainability, performance characteristics, and code testability
among others.

3- THE CHALLENGES

“In the late 1980s, two-thirds of all [software process improvement] SPI pro-
grams faltered or failed after the initial assessment due to flawed strategy,
lack of commitment, lack of follow-through, not measuring improvements, and
lack of crisp SPI objectives tied to business objectives” [18]. Small software
organizations face many challenges when implementing software metrics.
Among those issues are implementation cost, reluctant cooperation, fear of
individual consequences, dishonesty in reporting metrics, differences in re-
porting and use of process and product metrics, lack of experience in the SPI
process, lack of a champion for SPI, lack of organizational commitment, and
inexperienced management. This section highlights most common challenges
that small organizations face.

3-1 IMPLEMENTATION COST

Throughout the world, most software applications, including outsourced appli-
cations, are developed by small software organizations. Most of these organi-
zations have a small number of employees with a high level of specialized
training who usually take on many roles and work on multiple projects concur-
rently. Often, these organizations are owner-financed with a small amount of
capital. They find it difficult to bring in other investors and, therefore, have only
limited financial resources [19]. Most of the resources are invested in business
requirements, and few resources are available to devote to a robust mea-
surement program. Such businesses are not able to incur the cost of software
process improvement models and standards such as CMM, SPICE, and ISO,
because deployment and personnel costs are great. Due to lack of monetary
resources, it is not possible for a small organization to hire a consultant to
suggest software quality improvements; however, managers are aware of the
necessity to strive to achieve quality standards that eventually lead to lower
project cost. Costs to the organization are immediate when implementing a
metrics program; however, it is inevitable that benefits will be gained in the
long term.

3-2 RELUCTANT COOPERATION

When developers and managers feel that they will gain nothing from participa-
tion in the measurement process, great resistance to provide accurate raw
data is encountered. Lack of communication of the objectives of the mea-

76

Int.J. of Software Engineering, IJSE Vol.5 No.1 January 2012

surement program as well as a choice of metrics that are too complex can
contribute to this opinion. Developers also feel that the implementation of a
measurement process increases the burden of documentation and keeps
them from accomplishing their tasks [20]. Many times, developers do not feel
that metrics data is precise. They are not motivated to collect accurate data
because they think that the information will be changed by their managers.
Also, personal opinions about the measurement program (perhaps developed
through previous experience with such programs in the same or other compa-
nies) circulate through “the grapevine,” and this influences programmers’
thoughts about the newly-implemented plan [21].

Some developers and managers feel that a measurement process is unne-
cessary, but they are forced to collect data by their superiors. Because of a
negative attitude toward the metrics program, they never realize how much
their own work might improve from the analysis of the information gathered,
nor do they suggest other measurements that might be necessary in order to
develop a true picture of their work. In this case, the quality of the metrics data
is poor, and the data collected is incomplete.

The standardization of metrics across the organization may generate the feel-
ing that the measurement data does not fairly represent the effort that went
into the product and, thus, unfairly depicts the amount of work that was done.
Personnel may lose confidence in the metrics program if a measure does not
indicate the difference in effort put forth by various groups such as develop-
ment and maintenance.

Managers feel that developers are not receptive to the collection of metrics,
and this attitude affects the perception of the developers. A manager’s attitude
toward the metrics process has a big influence on the acceptance of the pro-
gram by developers, and if management does not realize that the organization
can reap benefits from the collection of metrics, then the developers are not
likely to realize this either.

Business managers tend to be skeptical about the measurement process.
They require proof that they will see a quick return on investment before they
are completely convinced of the value and usefulness of such a program. Be-
cause of this, it is imperative that improvements are implemented in key
process areas that will provide a visible payback quickly. Measurable benefits
should be seen within a year from the start of the program or business man-
agement will not support software process improvement programs [20,22].

From experience gained in a study of a start-up software company, Kajko-
Mattsson and Nikitina found that the most challenging obstacle to implement-
ing software process improvement was to encourage employees to change
their habits. Developers did not use the change management tool when the
study began; however, they implemented the tool as the study went on. At this
same company, management changed requirements and assignments spon-
taneously without thought to the effect on project milestones, and this beha-

77

A Framework for Instituting Software Metrics Haddad et al

vior never changed. Many of the process improvement actions that Kajko-
Mattsson and Nikitina attempted to implement could not be easily completed
due to employees’ lack of motivation to improve the process [23].

3-3 FEAR OF INDIVIDUAL CONSEQUENCES

According to Umarji [7], managers and developers are willing to collect and
report metrics when the data shows them to be successful, but when metrics
data identifies a problem, those same managers and developers will argue
that the measurement does not accurately represent their development me-
thodology. People tend to believe that their work is good and are heavily in-
vested in the projects to which they are assigned, so it offends them to see
metrics information misrepresent the amount of effort they put into their work.
These employees want to ensure that their reputation is not adversely af-
fected by the results of the metrics program for several reasons:

 Developers are proud of their code. The identification of bugs through
peer reviews is embarrassing. Developers are afraid that the metrics they
provide will be used to assess their personal performance; therefore, they
are sensitive about the information that is reported to the organization,
especially errors and defects found in their own code.

 Not only are developers concerned about their own well-being in the or-
ganization, but they are also concerned about the well-being of their
friends and team members. When asked to do peer reviews, managers
and developers sometimes report only the most obvious errors. Because
software development requires such close personal interaction at times,
the reporting of metrics data could make it difficult for peers to work to-
gether, and this may have a negative impact on the quality of the final
product.

3-4 DISHONESTY IN REPORTING METRICS

Dishonesty in reporting metrics is a common practice. Employees may not
mind reporting metrics, but they may resist the process of standardization of
metrics. The standardization of processes and metrics may cause the project
team to think that the metrics group is going to make comparisons between
various projects. Because of this, they are hesitant to share accurate data
because they are concerned about unfair comparisons. There must be a
common definition of metrics if comparisons are going to be made, but in the
world of software metrics, it is very difficult to develop a standard definition.

In some cases, scripts are written to enter data into metrics reports in order to
present the appearance of collecting metrics without actually having to report
them manually. The developers complete the required process including unit
testing but write scripts to fill out metrics reports because the manual collec-
tion of the measurement data is too complex. Scripts can also be used to en-
ter incorrect information intentionally. The intentional reporting of false metrics

78

Int.J. of Software Engineering, IJSE Vol.5 No.1 January 2012

data is a common problem, and if it happens on a small scale, it may never be
noticed [7].

3-5 LACK OF EXPERIENCE IN PROCESS IMPROVEMENT

Organizations that have never implemented process improvement programs
require the help of a consultant when defining their first effort into the im-
provement program; however, the hiring of a consultant is often difficult be-
cause of financial reasons. Software engineering and project management are
the common areas of the process in which small organizations are deficient.
In order to foster the development of this knowledge in employees, consul-
tants or more experienced employees in the organization may mentor other
employees to emphasize the benefits of improvement programs and the ne-
cessity of commitment to the organization’s improvement goals [22]. As the
process improvement program progresses, the employees of the organization
absorb the skills needed to define the next increment of process improvement
which may be closer to the organization’s needs. As the process becomes
more and more established, the organization’s commitment to process im-
provement increases.

3-6 LACK OF A CHAMPION FOR PROCESS IMPROVEMENT

If an organization is to change its performance, then senior management must
support the recommended changes. In most small organizations, although the
business founder is the main role model, a respected developer or technical
leader may have enough influence with upper management to convince eve-
ryone that a measurement program is necessary. In this case, the “champion”
is responsible for making the organization aware of process improvement and
for encouraging the sharing of knowledge among employees. Such an effort is
necessary in order for improvement to take place [23,24].

3-7 LACK OF ORGANIZATIONAL COMMITMENT

Organizational commitment is imperative at all management levels and at all
stages of the process improvement program. In some organizations, it is diffi-
cult to obtain commitment to process improvement because only the costs of
the improvement program are recognized. The benefits of the program must
also be realized, and in order for this to occur, measures of time, cost, quality,
and customer satisfaction must be communicated to upper management
throughout the process [22].

3.7 LACK OF PROJECT MANAGEMENT SKILLS

Often, a respected technical person is thrust into the project management
role. In such a case, the technical expert has little, if any, project management
experience or training. Good software process improvement and management
practices are not known, so they cannot be applied [21].

79

A Framework for Instituting Software Metrics Haddad et al

4- PROCESS IMPROVEMENT FRAMEWORKS

Metrics programs are tied to process improvement practices. Although small
organizations are aware of existing process assessment models, they often
assume that such assessments can be expensive and time-consuming, and
therefore, difficult to perform in such organizations. Furthermore, it is believed
that assessment models and standards, including documentation and process
standardization, are specifically for large organizations. Such procedures are
seen as inappropriate for small settings which normally have informal
processes and are focused on getting their product to market in order to sur-
vive [4].

The features of a process improvement framework are: 1) the definition of a
set of characteristics that must be present if an effective software process is to
be implemented, 2) a way to determine whether those characteristics are al-
ready in place, 3) a report of the results of the assessment, and 4) a plan for
assisting the software organization to put those process features that are
weak or missing into place.

Assessment-based process improvement models such as CMM, CMMI,
SPICE ISO/IEC 15504, and ISO 9001 are based on formal frameworks which
support the use of systematic processes and management practices for soft-
ware engineering [18]. Statements of purpose for these formal models are
outlined in Table 1.

Table 1 Formal Models for Software Process Improvement.
Model Statement of Purpose

CMM The Software Engineering Institute’s (SEI) Capability Maturity Model
(CMM) is a method of software process improvement. Organizations
implement this methodology to help assessment teams find strengths
and weaknesses in the software improvement process and to help
managers and technical staff determine the best ways to improve that
process. The organization must study itself using the concepts, goals,
and activities defined by the CMM. A maturity scale provides a picture
of process quality that can be used by developers and managers as a
measure from which improvement strategies can be planned.

CMMI CMM evolved into CMMI (Capability Maturity Model Integration) in
2002 as a framework to recognize and improve processes within an
organization. Its maturity levels are steps that an organization can
achieve in order to increase its value in the marketplace. CMMI is a
complete process framework that is based on system and software
engineering capabilities that should be present as organizations reach
different levels of process capability and maturity. Specific goals and
practices are assessed in each process area and rated according to
pre-defined capability levels (Incomplete (level 0), Performed, Ma-
naged, Defined, Quantitatively Managed, and Optimized (level 5)).
CMMI defines a complete software process in great detail covering
twenty-two key process areas.

ISO/IEC ISO/IEC 15504 is an international standard that presents a framework

80

Int.J. of Software Engineering, IJSE Vol.5 No.1 January 2012

15504
(SPICE)

for the assessment of process improvement and capability determina-
tion. This standard has five parts: Concepts and Vocabulary, Perform-
ing an Assessment, Guidance on Performing an Assessment, Guid-
ance on Use for Process Improvement and Process Capability Deter-
mination, and An Exemplar Process Assessment Model. Process as-
sessment is based on a capability dimension and a process dimension.
The Capability Dimension Scale has six levels (Incomplete (level 0),
Performed, Managed, Established, Predictable, and Optimizing (level
5)). The process dimension identifies a group of processes on which
the assessment is performed and is based on one or more external
process reference models which define a set of universal processes.
By choosing the particular processes that are most important to an
organization, the standard can be flexibly applied.

ISO 9001 ISO 9001 emphasizes the importance of identification, implementation,
management, and continual improvement of the processes that are
necessary for a quality management system. It also stresses the impor-
tance of the management of process interaction in achieving the organ-
ization’s goals. Process effectiveness and efficiency can be assessed
internally or externally and be measured on a maturity scale.

Over the years, researchers have done much work in creating informal
process improvement approaches that make the formal models more feasible
for implementation in small organizations. As a result, a number of informal
methods have been developed for small organizations including PSP, TSP,
PRISMS, ADEPT, BOOTSTRAP, MARES, RAPID, SPINI, FAME, TOPS,
PROCESSUS, and GQM. Statements of purpose for these methods are de-
scribed in Table 2.

Table 2 Informal Methods for Software Process Improvement.
Method Statement of Purpose

PSP/TSP PSP was designed to help software engineers continually do better
work based on personal performance data, and TSP was designed
to build effective, self-directed, self-improving teams.

PRISMS The PRISMS model emphasizes the use of business goals for the
selection of key process areas for assessment, the involvement of
both upper management and developers, and the use of quantita-
tive measurement.

ADEPT ADEPT uses both plan-driven and agile methods to develop an
improvement-based SPI program focused on a company’s busi-
ness goals.

BOOTSTRAP The purpose of BOOTSTRAP is to identify process strengths and
weaknesses, to support improvement planning with suitable and
reliable results, to plan improvement steps that will meet the or-
ganization’s goals, and to implement standard requirements that
will increase process effectiveness.

MARES MARES is a method that provides guidance in identifying target
process profiles and selecting high-priority processes to assess on
the basis of an organization’s business goals and model.

RAPID The RAPID assessment is limited to one day and must be per-
formed by ISO/IEC 15504 assessors. Eight key process areas are
examined, key risks and improvement opportunities are identified,
and action recommendations are made.

81

A Framework for Instituting Software Metrics Haddad et al

SPINI SPINI is a SPICE-compatible assessment for small organizations
with the goal of process improvement. SPINI analyzes the needs
of the organization, performs process assessment, and produces a
software process improvement plan. There is no monitoring, con-
trol, or feedback on the progress of the assessment.

FAME FAME allows the execution of either a SPICE or BOOTSTRAP
assessment focusing on improvement and, for small organizations,
can be accomplished in a one-day workshop. FAME assessments
are focused on business goals and requirements and utilize a
GQM-based measurement program.

TOPS TOPS is an ISO/IEC 15504-conformant assessment model that is
based on three standard process areas and focuses on process
improvement in order to promote innovation.

MPS Model The MPS Model uses the principles of software engineering ac-
cording to the main international approaches for software process
definition, evaluation, and improvement in order to develop a ge-
neric model appropriate for small and medium software enterprises
that need to make improvements in software processes in a short
amount of time and at a low cost.

MoProSoft MoProSoft is a software engineering process model based on
CMM, ISO 12207, and ISO 9001 with the purpose of encouraging
the use of standards in Mexico by using best practices in software
engineering. The model is based on an organizational structure of
top management, management, and operations and the steps to
be performed by specified roles.

PROCESSUS PROCESSUS performs an assessment using six processes based
on the CMM and ISO 9001: customer relationship management,
project management, software engineering, supporting activities,
process management, and process automation.

Goal-
Question-
Metric

Goal-Question-Metric (GQM) is a methodology used to develop a
metrics program based on the goals of the organization.

5- METRICS ACHIEVABLE BY SMALL ORGANIZATIONS

Few small organizations will implement sweeping metrics programs, but it is
necessary that they measure and use metrics to improve the software process
and products. The three purposes of a metrics program are: 1) to know the
organization’s capability or benchmark; 2) to make achievable estimates; and
3) to manage development in order to stay on schedule [24]. Appropriate me-
trics that do not require high overhead and upfront investment do exist. It is
best for a small organization to start with a few easily-gathered measures that
direct the focus of the organization to areas that will increase the possibility of
achieving stated goals [25,27,28]. For such organizations, the most useful
metrics are those most easily gathered, such as metrics related to the individ-
ual programmer, the project team, and the organization.

82

Int.J. of Software Engineering, IJSE Vol.5 No.1 January 2012

5-1 COST METRICS

Project cost may be one of the most easily-determined measures at the end of
the project. Using gathered schedule data, both actual and estimated, the cost
of the project is determined based on time information and salaries. Other
project costs should be determined and included in the project cost. Cost me-
trics include comparisons of estimated and actual costs [26]. Management
indicators within return-on-investment models of process improvement include
measures of product quality, process quality, project predictability, and cus-
tomer satisfaction; however, some of the biggest payoffs of process improve-
ment are better job satisfaction, pride in work, an increased ability to attract
and retain experts, and a reputation for excellence [22].

5-2 SIZE METRICS

Software sizing is most commonly predicted using lines of code (LOC) or
function points (FP). LOC is very common in software engineering organiza-
tions while FP is more popular in information systems organizations. LOC is
based on an internal view of the system as seen by the developer while FP
takes into consideration an external view of the system as seen by the user
[26]. Other ways to size software are to use object classes, requirements, us-
er stories, or elements of the graphical user interface [27,24]. These counts
are typically adjusted for complexity.

5-3 SCHEDULE METRICS

Each member of the project team should record daily activities (effort/time) on
a simple tracking form so that the reporting becomes a habit. Perhaps ten mi-
nutes a day should be devoted to this activity [28]. The chosen measurements
should be easily gathered so they do not take a lot of extra time. Spread-
sheets and charts can be used to accumulate the information into a metrics
database. Through the use of spreadsheets, the data can be sorted, and cal-
culations can be made as needed [29]. Examples of schedule metrics include
comparisons of actual completion dates to estimated completion dates. Sche-
dule data may also be related to software size and cost information in order to
determine the productivity of the project and the business.

5-4 QUALITY METRICS

Errors and defects are found throughout the software development process.
Generally, errors and their severity are measured during system testing before
the system is delivered to the customer, and defects are measured after the
system is delivered to the customer. Defect distribution and the cost to find
and fix defects are derived measures. The number of product failures is re-
ported by end users through customer support and is an objective measure.
The defect find rate (the number of defects found per hour by testers) helps to

83

A Framework for Instituting Software Metrics Haddad et al

determine the cost of testing and to evaluate how stable the system is. Defect
densities should be recorded throughout the testing process [25].

In smaller organizations, complete and accurate information about errors is
generally not collected until review and testing measurement practices have
been in place for a while, but customer-found defects are reported regularly
through user problem reports after the product has been installed. Process
metrics are not as easily collected as product metrics, but they provide infor-
mation that can be used to immediately improve the process and the result
before the product is deployed. Product metrics, while easy to measure and
readily available, do not provide data for process improvement until the end of
the process [7,27].

For small software organizations, collecting easily-gathered measures and
computing metrics is estimated to be from three to eight percent of the project
budget at the beginning of a metrics program. After developers and project
managers become familiar with the process, the cost drops to about one per-
cent of the project budget. The organization can realize a substantial return on
investment if the information gathered leads to meaningful process improve-
ment [5].

Table 3 shows the measurements that are most helpful and easily-collected at
the beginning of a metrics program for a small organization.

Table 3 Achievable Metrics for Small Software Organizations.
Category Scope Measurement
Cost Individual and Project Estimated Cost, Actual Cost

Size Individual and Project
LOC/KLOC, FP, Object Classes, Require-
ments, User Stories, GUI Elements as appro-
priate for application

Schedule Individual and Project

Estimated Duration, Actual Duration – time
required to complete a task (individual) or the
project in calendar units of time;
Estimated Effort, Actual Effort;
Work Effort Distribution – time spent in various
development or maintenance activities

Quality Individual and Project Number, type, severity, and status of defects
found by testing, peer reviews, and customers

After the metrics program has been established, additional metrics may be
added as the organization feels the necessity. Some of these more compre-
hensive metrics are found in Table 4.

84

Int.J. of Software Engineering, IJSE Vol.5 No.1 January 2012

Table 4 More Comprehensive Metrics Program for Small Software Organizations
(Wiegers, 2007)

Category Scope Measurement

Cost
Individual N/A
Project Estimated Cost, Actual Cost
Organization Estimated Cost, Actual Cost

Size
Individual LOC/KLOC, FP, Object classes, Requirements, User

stories, GUI elements as appropriate for application
Project Product size
Organization Productivity

Schedule

Individual

Work effort distribution among various development
and maintenance activities;
Estimated and actual duration;
Estimated and actual effort

Project

Estimated and actual duration between major miles-
tones;
Estimated and actual staffing levels;
Number of tasks planned and completed

Organization
Overall project cycle time;
Planned and actual schedule performance;
Schedule/effort estimation accuracy

Quality

Individual Number and type of defects found by unit testing;
Number and type of defects found by peer reviews

Project

Number of defects found by integration and system
testing;
Number of defects found by peer reviews;
Defect status distribution;
Percentage of tests passed

Organization Released defect levels

6- IMPROVEMENTS REALIZED IN SMALL ORGANIZATIONS

The implementation of informal process improvement approaches for small
organizations resulted in a number of changes as indicated in the case stu-
dies and industrial reports gathered and analyzed for this work. Among them,
increased project management activities, improvements to the testing
process, and implementation of risk management strategies were the most
common. Improvements in requirements gathering change management,
measurement, and additional areas were also realized from these approach-
es. This section highlights common improvements small organizations were
able to achieve as a result of metrics programs. These examples were re-
ported in the case studies analyzed for this work. They are an indication of
potential improvements and benefits that small organizations may realize.

6-1 IMPROVEMENTS IN PROJECT MANAGEMENT

Systematic project management was introduced in several organizations. Fo-
cus was placed on measurement and collection of project data for planning

85

A Framework for Instituting Software Metrics Haddad et al

purposes. In some cases, Microsoft Outlook was used as a project tracking
device at the task level, and timesheets were used as a way to capture project
status. Organizations began to generate a knowledge base of historical data
to guide them in project estimation and planning. Several valuable data items
were collected regularly, and some key systems were modified to improve
data collection. Better predictability and fewer time overruns were the result of
the establishment of these systematic processes, and awareness of the im-
portance of measurement as a source of objective information on project sta-
tus was increased [1,4,23].

6-2 IMPROVEMENTS TO THE TESTING PROCESS

Some organizations were performing minimal software testing, so the estab-
lishment of systematic test practices improved the quality of their software.
Unit testing, functionality testing, performance testing, and deployment testing
were implemented in several companies that had not previously seen a great
value in the testing process. Most companies reduced costs through fewer
errors and less rework. In one organization, a tester was appointed, test plans
were formulated, and test logs and incidents were recorded in order to control
risks regarding testing. Improvement in testing procedures gave these com-
panies more confidence in their product releases [4,23].

6-3 IMPLEMENTATION OF RISK MANAGEMENT STRATEGIES

Many reported examples of risk assessment improvements. A risk assess-
ment and management procedure was implemented at one company. In
another company, risks were routinely identified for all projects, and risk miti-
gation strategies were defined. In a third company, an employee attended a
Risk Management training course, and, upon return, established a risk as-
sessment and management plan. This had a great impact on the quality man-
agement system and pointed out the necessity to change such procedures as
testing, contract review and planning, and requirements control [4,18]

6-4 IMPROVEMENTS IN REQUIREMENTS GATHERING

In one organization, developers misunderstood initial requirements and had to
rework many of the implemented features. This delayed new feature devel-
opment for over 40% of the planned time. As a result of their process im-
provement program, a requirements tracking method was implemented at this
organization using a simple template for describing requirements, and this
change reduced the new feature development delay to only 10% of the
planned time. Another company saw better product quality and increased cus-
tomer satisfaction due to improvements in their requirements gathering
process [4,23].

86

Int.J. of Software Engineering, IJSE Vol.5 No.1 January 2012

6-5 IMPROVEMENTS IN CHANGE MANAGEMENT

Due to management’s spontaneous changes/additions to requirements, busi-
ness and support teams at one organization had no idea of which require-
ments were being implemented in a release, and the change requests were
disorganized and undocumented in the change management tool. Also, de-
velopers did not update the status of the change requests they worked on, so
the tool was never current and could not be used to track project status. In-
creased use and daily updating of the existing change management tool in-
creased control over and documentation of change requests which provided
the ability to view project status and progress on change requests [23]. In
another company, an organization-wide change request system was devel-
oped and implemented, and a defect tracking and management tool was in-
troduced and put into practice [18].

6-6 IMPROVEMENTS IN MEASUREMENT

The companies in the case studies reviewed had no formal measurement
process at the beginning of the assessment process, so any measurement
activity was an improvement to the existing process. In most companies,
much more data was being collected, but analysis of that data was not always
accomplished, so the measurements did not have any impact on project per-
formance. Suffice it to say that the organizations became aware of the impor-
tance of measurement as a source of objective information regarding the
software development process. As analysis of the data was introduced and a
historical data repository was established, the benefit of greater data collec-
tion and analysis became evident to the organizations [18].

6-7 IMPROVEMENTS IN OTHER AREAS

Additional improvements were realized in the areas of communication, cus-
tomer support, and defect management. At one company in which there was
little verbal or written communication, daily stand-up meetings were imple-
mented, and change request and requirement documentation processes were
established [23]. Another company began holding regular postmortems. A
step toward continuous knowledge management and process improvement
activities, postmortems allow the project team and the organization to learn
from the successes and failures of a project. In another company, a customer
support process was put in place, and a tool for managing customer requests
was implemented. A reduction in customer requests resulted from the use of a
help desk tool put into place following the assessment [4]. Defect manage-
ment was implemented when a software package was purchased to help track
and manage defects and issues in one company, and another company im-
proved its requests and defects system which became the driver for all work in
that company. Formal projects were linked to existing requests, and corrective
maintenance was managed using the requests and defects system [18].

87

A Framework for Instituting Software Metrics Haddad et al

7- FRAMEWORK FOR REALIZING METRICS PROGRAMS

The investigation of reported experiences reveals that the mind-set “metrics
only work in large settings” is false. Although well-known software process
models work better in large settings, these models have been scaled down for
smaller settings and, simultaneously, new models are being developed specif-
ically for smaller organizations. In addition, many years of research in this
area has resulted in some options for utilization of software metrics within or
outside of a process improvement framework, regardless of the size of the
organization. Small software organizations should plan to start small when
developing their metrics programs.

A simple framework for realizing a metrics program is based on the
Goal/Question/Metric (GQM) paradigm [39]. The GQM approach basically
defines the goals an organization wishes to achieve, breaks each goal down
into one or more questions that answer whether or not the goal has been
reached, and identifies one or more metrics per question that will provide the
data needed to answer the question. Note that each question may require
more than one metric, and at the same time, a single metric may be used to
answer multiple questions [30].

The presented framework includes four steps:

Deciding How to Measure: The first decision facing the small software organi-
zation is which approach to take for creating a metrics program. In the follow-
ing section, three approaches are discussed: the alternatives of scaling down
one of the large well-known process improvement models, adopting a smaller
process improvement model, or creating a custom program. In this work, the
custom program is the primary focus although the topics presented here
should prove relevant regardless of which approach is taken.

Overcoming the Obstacles: Many obstacles appear to stand in the way of im-
plementing a new metrics program. Some of these obstacles may be im-
agined while others are very real. Imaginary or perceived obstacles may in-
clude thoughts like “We don’t have time to take measurements!” or “We have
testing procedures in place already!” or “There’s no extra money in the budget
for this!” Although all of these may appear valid on the surface, they are really
just excuses that distract from the real challenges of collecting useful mea-
surements which may be used for the improvement of products and, ultimate-
ly, the bottom line.

Deciding Where to Start: Whenever a new opportunity presents itself, it is
usually difficult to determine the best way to accomplish it. Only the organiza-
tion itself can determine what metrics are best and what results define suc-
cess. The methods shown in Table 2 allow any organization to ease into the
measurement process on their own terms and to adjust their goals and me-
trics as needed.

88

Int.J. of Software Engineering, IJSE Vol.5 No.1 January 2012

Choosing Relevant Metrics: The decision to implement a software metrics
program in a small organization is a big one and choosing which metrics to
use can seem overwhelming. The next section presents an overview of the
types of metrics available, discusses a few of the more popular metrics, and
gives some suggestions for the use of some basic metrics as a starting point.

8- IMPLEMENTATION APPROACH

The implementation of a metrics program involves several framework steps. A
small organization must consider and benefit from certain options and oppor-
tunities that are represented by reported practical experiences of organiza-
tions that already instituted metrics programs.

8-1 DECIDING HOW TO MEASURE

Software metrics are recognized as a required tool in process improvement.
Several formal models (CMM, CMMI, etc.) have proven successful in helping
large organizations that are able to devote much time and many resources to
a process improvement program; however, these models have proven difficult
to implement in small organizations where budgets and staff are usually at a
premium [31]. Yet there is still hope for resource-limited organizations. Soft-
ware improvement need not be part of a huge, cumbersome, expensive
process that reworks the structure of the entire organization. Many improve-
ments can be made by adapting or scaling down one of the large process
models, adopting a process model designed for smaller organizations, or uti-
lizing one or more generally accepted paradigms to create a custom im-
provement program.

Some small organizations have had success in adapting a well-known large
process improvement framework on a smaller scale in part by combining
roles, procedures, and documentation requirements to reduce the workload
required to implement; however, it can be difficult to achieve improvements
using this approach, and assistance from an outside party (such as a consul-
tant) may be required to reach a high level of compliance [32].

There are several informal approaches to process improvement (Table 2). In
addition, there are process models that are targeted at the small organization,
such as LOGOS [33], CMMI in Small Settings, and SE Life-Cycle Profiles for
Very Small Enterprises [34]. These relatively recent developments in process
modeling indicate that industry and academia are recognizing both the relev-
ance of small organizations and the importance of establishing methodologies
for assisting these organizations to reach their improvement goals; however,
there still does not appear to be widespread recognition and adoption of these
newer models. A small organization may benefit by using one of these ap-
proaches, especially if they choose to work with an outside entity to assist with
the implementation.

89

A Framework for Instituting Software Metrics Haddad et al

The third improvement option available to the small software organization is to
define their own specific goals, determine what success is in terms of how and
when these goals are reached, and choose specific measurements and data
collection techniques to assess progress toward the goals. Because small
software organizations’ strengths lie in flexibility, innovation, and speed, this
choice may appeal to many who wish to use a “just enough” approach [35].
Choosing to customize its own software process improvement strategy does
demand some degree of knowledge, self-assessment ability, and willingness
to experiment, and many small software organizations possess these qualities
in abundance.

8-2 OVERCOMING THE OBSTACLES

Whichever path is taken towards process improvement, the task of collecting
and effectively utilizing metrics data is the primary concern; however, prob-
lems that may need to be overcome before implementing a software metrics
program can include staff that does not accept a need for change and is un-
willing to take time away from their core responsibilities to collect data [35],
management who do not understand the need for the additional overhead of
an improvement program [30], and the challenge to develop a reliable process
that is repeatable and useful going forward [36]. Small steps toward an im-
proved process can go far toward reducing errors and enhancing productivity,
so a limited scope is suggested for an initial program. As soon as the benefits
of the program become clear, the obstacles should begin to diminish.

How can a software metrics program be justified? If the improvement pro-
gram has begun, then the organization is already well aware of the require-
ments for measurement-taking that are embedded in those programs. If the
organization is not involved in an organized process improvement program,
but simply desires an increase in quality that can be tracked quantitatively,
then a literature review of reported experiences should provide evidence of
the potential gains inherent in using software metrics. Much research, many
publications, and scores of success stories exist across a range of business-
es, both large and small, related to software metrics [5].

How can management convince the staff to take time away from daily tasks,
which in a small organization can be quite relevant to the group’s survival, to
take the needed measurements? One way to achieve this is by automated
capture of the needed data. These days, much information is stored electroni-
cally including program code, project plans, and even staff timesheets. There
is the possibility of gathering quite a bit of data from these existing electronic
stores with little or no interruption to daily activities. In some cases, this may
require some changes to document formats to make the data more consistent,
easy to capture, etc. Although automatically captured data can be useful, it
may not by itself provide enough detail. Some combination of automatic cap-
ture and human reporting of data is likely the ideal [37]. Whatever data people
are asked to collect should be both easy to understand and easily collected
[38] and should be kept to a minimum.

90

Int.J. of Software Engineering, IJSE Vol.5 No.1 January 2012

Convincing management of the benefits of a software metrics program may
be easier than convincing engineering staff, especially if the management is
well-grounded in quality management principles. Management should be re-
minded of the high long-term costs associated with poor quality products. All
managers should be aware that quality control is essential to an effective
manufacturing process, and software production is no exception. The benefits
of a software metrics program include creating a repository of information that
can be used to more accurately estimate future products, plan project time-
lines more effectively, and increase customer satisfaction while also having
the potential to help reduce defects and maintenance costs.

8-3 DECIDING WHERE TO START

Perhaps the most difficult part of any metrics program is to determine what
goals are to be achieved, what measurements need to be captured to assess
progress, and how to use the captured data for the improvement of future as
well as current projects. A good way to approach this is by utilizing the GQM
paradigm. With the GQM approach, the organization defines its goals, breaks
each goal down into one or more questions that will answer whether or not the
goal has been reached, and identifies one or more metrics per question that
will provide the data needed to answer the question. While, at first glance, this
approach appears to generate a large number of metrics to be captured, this
may not be so. Each goal may create more than one question, and each
question may require more than one metric to provide the answer, but it is
noted that a single metric may be used in answering multiple questions [39].

Any organization could probably come up with a long list of goals, a huge
number of questions, and a very long list of potential metrics. Although every
one of these may be valid and valuable, care should be taken to start any im-
provement program slowly. Trying to do too much too fast can be a recipe for
disaster. Take time to work with people of various positions and responsibili-
ties within the organization to get a consensus on an initial small set of goals
that are believed to be relatively quickly achievable as well as important to the
success of the business. A “quick win” could do wonders in terms of getting
those people who had doubts on board with any new process, and beginning
with a focus on the most important or urgent needs of the business will help
ensure that an initial success will have a real, positive impact. After a small
process is in place and real life experience in the implementation and use of
software metrics has been gained, the GQM can be revisited to identify addi-
tional data to be captured and analyzed [40].

8-4 CHOOSING RELEVANT METRICS

Going through the GQM process should give the organization insight into what
it wants to measure, and a review of the results should produce a short list of
initial metrics that can answer the questions that will indicate whether those
goals are being achieved; however, the metrics defined by a pass through the

91

A Framework for Instituting Software Metrics Haddad et al

GQM are likely somewhat high-level and must be clarified in order to define
measurements that are both meaningful and easily captured. Many proposed
software measurements cover all parts of the software process from design to
development to testing with some being quite simple, others consisting of
complex calculations, and still others targeted towards certain types of soft-
ware such as object-oriented applications or web applications. Since there is
no single metric that covers all aspects of software, and because many exist-
ing metrics are widely used but none is universally accepted, the organization
is left to decide for itself which metric or metrics will best suit its needs.

Whatever metrics are chosen by the organization should be easy to under-
stand, easily collectible, valid across the organization, and meaningful across
time [38]. Being easy to understand is obviously a subjective criterion and so
must be determined by the people who will actually be transforming collected
data into the chosen metric. The exact definition of easily-collectible may also
vary from one organization to the next although as mentioned above the more
transparent and simple the collection process is the better, both in terms of
the completeness of data captured and the reliability of this data [40]. A
couple of quality passes through the GQM process should ensure that at least
most of the metrics chosen for the improvement program will be applicable to
the entire organization. Any metric that helps answer a question that defines a
major goal for the organization should be considered as being a valid metric
across the organization. The requirement that metrics be meaningful across
time reinforces the idea that the metrics program (or the entire improvement
process) is not a short-term endeavor but rather that the data collected today
is expected to be useful for decisions to be made tomorrow, next year, and
going forward [36].

Depending on how the goals and questions are chosen, the organization may
require metrics across multiple categories. Some of the basic categories of
metrics would include program complexity, development and testing effort,
schedule, and quality. Once these categories are listed out, they all would
appear to be very important, and there may be a temptation to integrate me-
trics for all of these categories into a new improvement program. This is cer-
tainly a noble intention, and if the resources are available to capture and util-
ize this data to effect actual improvement then there is no harm in proceeding;
however, the focus is on the needs of a small organization with limited re-
sources, so the scope must be limited to gathering the metrics identified in the
GQM assessment above. It is important to note that while there are many
things that could be measured and possibly improved, every organization has
strengths as well as weaknesses, and attention must first be given to making
progress in the areas where there is the most room for improvement.

There are some relatively well-known, and more or less widely-accepted, me-
trics that attempt to provide information for multiple categories (Table 3). One
of these is function points (FP) which uses values derived from program
attributes along with other values derived from answering questions which are
then transformed using complexity weights to calculate the FP value for the

92

Int.J. of Software Engineering, IJSE Vol.5 No.1 January 2012

system. The FP calculation requires the use of judgment in determining both
the values and the weights used in the calculations which may not yield the
same results when applied to a system by different individuals. The cyclomatic
complexity metric is another well-known calculation which computes the num-
ber of linearly-independent execution paths through the program code. Al-
though the cyclomatic complexity calculations can appear quite daunting to
those who are not mathematically inclined, and despite multiple criticisms over
the years, the popularity of this metric persists. Many other more targeted me-
trics exist including various object-oriented metrics, component-level metrics,
and user interface metrics.

The most basic metrics that could likely be applied to the categories (Table 3)
would be LOC for program complexity, hours worked for development and
testing effort, calendar dates for schedule, and defect counts for quality. Al-
though this may sound simple, in a recent study, researchers tested several
software packages that computed multiple popular software metrics against
several open source systems. They found significant variations in results from
one measurement package to the next even when measuring LOC. They
attribute these variations to inexact definitions of the metrics as well as varia-
tions of the metrics that are difficult to distinguish [41].

9- MAKING METRICS WORK

An organization should not abandon all hope at this point and give up any
idea of trying to use metrics to help improve their processes. It should be rec-
ognized that just as there are many metrics, and each metric can have many
variations, each software organization is also unique. The end result of a me-
trics program can be valuable when the measurements are kept simple and
tailored to each organization [36]. One key to success is consistency which, in
regard to a metrics program, means to choose specific measurements, defin-
ing a particular calculation for each metric which never changes. Applying the
same calculations using the same methodology over time must produce con-
sistent results. On the other hand, metrics that are not working as anticipated
should be dropped as it is better to drop a metric that is not providing reliable
data and spend resources where they can be of more benefit [40].

One alternative for calculating software metrics is to perform the calculations
within the organization. This does not necessarily mean getting out pencil and
paper, but it can include internally-developed programs that calculate the cho-
sen metrics. Whether using a spreadsheet application, home-grown software,
or longhand calculations, everything remains completely transparent and con-
trollable. Another option for calculating software metrics is the use of off-the-
shelf programs. In spite of the findings mentioned above that showed a lack of
consistency between various metrics-calculating programs, as long as one
program or package is chosen and used for all calculations, the results should
remain consistent over time. By ensuring that apples are always compared to

93

A Framework for Instituting Software Metrics Haddad et al

apples, the focus can be on improving the processes rather than continually
questioning the data.

At this point, much data has been collected and computed. Of course, opi-
nions abound as to what ideal values are for any given metric, and the values
calculated for any given metric may be different than those another organiza-
tion calculated. As noted previously, each organization is unique, so even if
two organizations used the same exact formulas for their calculations, a
“good” number for one company may not be excellent for the other, and vice
versa. It is worthwhile to read the published research regarding the chosen
metric (preferably prior to choosing it) to gain insight into how it is applied in
other organizations and to learn from the experiences of those other organiza-
tions. It would also be a good idea to run the chosen metric calculations
against existing code that is widely considered “good” and against code that is
widely considered “bad” or in need of improvement which could help to estab-
lish a baseline for the organization to use going forward. It is also imperative
that blame not be assigned to individuals as part of the metrics program [5].
This is not only bad for morale; it can undermine the data collection effort and
threaten the entire improvement program.

The implementation of any improvement program can seem like a lonely task
that can be difficult at times. There are many resources [41] and examples of
commercial software [42,43] available for software metrics programs and
software process improvement in general. These are listed just to give a small
taste of what is available; a quick literature search will yield many more re-
sources. An organization will need to research all of the approaches to soft-
ware metrics to determine which approach would be best fit for its needs.

To facilitate the success of the metrics program, other developers should be
told why the measurements are necessary and how the data will be used.
They should know that the data will never be used against them but that they
will never be rewarded as a result of the measurement information either. The
data should only be made available to those whom it specifically measures.
Only the individual developer should be aware of measurements specific to
him, and only the team should be aware of measurements specific to the
team. All of the data, however, can be broadcast across the organization in
general ways to present organizational profiles. Personnel should keep an
open mind about the trends that become apparent from the analysis of ga-
thered data.

10- CONCLUSION

The practice of software measurement is lagging behind and yet mature
enough to be sought widely across the software industry. Although the impor-
tance of metrics has been evident since the early 1970’s, the adoption of the
practice is moving slowly in software development. Because small software
organizations make up a large percentage of software organizations through-

94

Int.J. of Software Engineering, IJSE Vol.5 No.1 January 2012

out the world, the adoption of programs of software process improvement and
metrics are a necessity in order to begin to resolve the software crisis.

The implementation of these programs in a small organization is not a simple
task. They require much effort before and after they are put into place. Some
of the challenges to the implementation of these programs include cost, vary-
ing perspectives of managers and developers, fear of individual conse-
quences, dishonesty in reporting metrics, little experience in software process
improvement, and lack of organizational commitment.

Through the assessment process of an informal approach to software process
improvement, strengths and weaknesses of an organization are identified, and
these strengths and weaknesses are used in the creation of a measurement
program that focuses on business goals using the Goal-Question-Metric me-
thodology. The small organization should fulfill three requirements when
choosing measurements for the first iteration of its metrics program: 1) the
measurements should be low cost; 2) the measurements should be easy to
gather; and 3) the measurements should be easy to analyze.

A Four-Step framework for guiding small organizations through the initial
steps of establishing a metrics program was presented in this work. The ap-
proach outlines some of the options and opportunities that are available for
organizations seeking to improve their development processes. The organiza-
tion must start small with metrics that provide the highest value and the least
possible cost to its operation. Chosen metrics should be easy to understand,
easily collectible, valid across the organization, and meaningful across time. A
successful metrics program will require the long-term commitment of the tech-
nical and management staff to ensure success by seeking to control the
process.

The new metrics program should seek solutions for the most important issues
and strive for improvement in specific areas of weakness. The exact metrics
used will vary by organization, but the end goal will always be a more effective
process for producing a higher quality product. The focus should be on creat-
ing a program that provides real improvements to the organization as many
resources and tools are readily available at little or no cost.

Effective communication between managers and developers is an important
factor in the success of software process improvement and metrics adoption.
With the trust that is built as a result of effective communication, collected da-
ta will be accurate, precisely-documented definitions of metrics will be fol-
lowed, and consistent data will be collected from project to project.

There are many decisions to be made both before and during the process,
and there is no guarantee that any of the choices will be easy or that everyone
involved will agree with every decision; however, sufficient evidence has been
presented showing the benefits of a metrics program and how a well-planned
and well-implemented metrics program promises improvements over the

95

A Framework for Instituting Software Metrics Haddad et al

short-term and the long-term. Making metrics work through an improvement
process is essential to realizing these promises.

Future work will focus on further investigation of the GQM paradigm potential
to facilitate the proposed framework and its applicability to industrial applica-
tions. Furthermore, a case study will be conducted in order to understand the
effectiveness of the proposed framework in a practical setting.

REFERENCES

[1] F.J. Pino, F. Garcia, and M. Piattini, “Key Processes to Start Software
Process Improvement in Small Companies,” Proceedings of the 2009
ACM Symposium on Applied Computing, 2009.

[2] H. Oktaba and M. Piattini, Software Process Improvement for Small and
Medium Enterprises: Techniques and Case Studies. Hershey IGI Pub-
lishing, 2008.

[3] F. McCaffery, P.S. Taylor, and G. Coleman, “Adept: A Unified Assess-
ment Method for Small Software Companies,” IEEE Software, pp. 24-
31, January/February 2007.

[4] C. Wangenheim, A. Anacleto, and C. Salviano, “Helping Small Compa-
nies Assess Software Processes,” IEEE Software, pp. 91-98, Janu-
ary/February 2006.

[5] R.S. Pressman, Software Engineering: A Practitioner’s Approach, New
York, NY: The McGraw Hill Companies, Inc., 2010.

[6] M. Umarji and C. Seaman, “Gauging Acceptance of Software Metrics:
Comparing Perspectives of Managers and Developers,” Proceedings of
the 2009 Third International Symposium on Empirical Software Engi-
neering and Measurement, Lake Buena Vista, Florida, pp. 236-247, Oc-
tober 2009.

[7] M. Umarji and C. Seaman, “Why Do Programmers Avoid Metrics?”
Proceedings of the Second ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, Kaiserslautern,
Germany, pp. 129-138, October 2008.

[8] H.M. Haddad and D.E. Meredith, “Instituting Software Metrics in Small
Organizations: A Practical Approach,” Proceedings of the IEEE Interna-
tional Conference on Information Technology: New Generations, Las Ve-
gas, Nevada, pp. 227-232, April 2011.

96

Int.J. of Software Engineering, IJSE Vol.5 No.1 January 2012

[9] H.M. Haddad and N. Ross, “Software Process Improvement and Metrics
Adoption in Small Organizations,” Journal of Information Systems
Technology and Planning, Vol. 3, No. 6, pp. 6-29, December 2010.

[10] N. Ross and H.M. Haddad, “Metrics in Small Software Organizations:
Challenges and Possibilities,” Proceedings of the 2010 Intellectbase In-
ternational Consortium Academic Conference, Atlanta, Georgia, pp. 32-
41, October 2010.

[11] W.T. Ward, “Calculating the Real Cost of Software Defects,”
http://findarticles.com/p/articles/mi_m0HPJ/is_n4_v42/ai_11400873,
Hewlett-Packard Journal, October 1991.

[12] T. DeMarco, Controlling Software Projects: Management, Measurement
& Estimation, Yourdon Press, New York, USA, 1982.

[13] Department of Computer Science, University of Calgary, “SENG Focus
Area: Evolutionary Software Engineering,”
http://www.cpsc.ucalgary.ca/cpsc_research/areas/evolutionary, 2010.

[14] Center for Systems and Software Engineering, University of Southern
California, “COCOMO II,”
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html,
2011.

[15] Quantitative Software Management, Inc., “SLIM Software Cost Estima-
tion, Planning, and Benchmarking Tools,” http://www.qsm.com/, 2011.

[16] R. Lytz, “On Board Software for the Boeing 777,”
http://www.stsc.hill.af.mil/ resources/tech_docs/ gsam3/appenq.pdf,
2010.

[17] Cenqua Pty Ltd., “Clover, Code Coverage,”
http://www.cenqua.com/clover/doc/coverage/intro.html, 2007.

[18] A.P. Cater-Steel, “Process Improvement in Four Small Software Com-
panies,” Proceedings of the 13th Australian Software Engineering Con-
ference, Canberra, ACT , Australia pp. 262-274, August 2001.

[19] A. Anacleto, C. Wangenheim, C. Salviano, and R. Savi, “A Method for
Process Assessment in Small Software Companies,” 4th International
SPICE Conference on Process Assessment and Improvement, Portug-
al, 2004.

[20] P. Allen, M. Ramachandran, and H. Abushama, “PRISMS: An Approach
to Software Process Improvement for Small to Medium Enterprises,”
Proceedings of the Third International Conference on Quality Software,
pp. 211-214, August 2003.

97

A Framework for Instituting Software Metrics Haddad et al

[21] E. McGuire, Software Process Improvement: Concepts and Practices,
Hershey, PA: Hershey, Pa., Idea Group Publishing, 1999.

[22] G. Santos, M. Montoni, J. Vasconcellos, S. Figueiredo, R. Cabral, C.
Cerdeiral, A.E. Katsurayama, P. Lupo, D. Zanetti, and A.R. Rocha,
“Implementing Software Process Improvement Initiatives in Small and
Medium-Size Enterprises in Brazil,” Sixth International Conference on
the Quality of Information and Communications Technology, Lisbon, pp.
187-198, October 2007.

[23] M. Kajko-Mattsson and N. Nikitina, “From Knowing Nothing to Knowing
a Little: Experiences Gained from Process Improvement in a Start-up
Company,” Proceedings of the 2008 International Conference on Com-
puter Science and Software Engineering, Wuhan, China, pp. 617-621,
December 2008.

[24] M.C. Mah and L.H. Putnam, “Software by the Numbers: An Aerial View
of the Software Metrics Landscape, The IT Metrics and Productivity In-
stitute: Best Practices in Software Development, Management, and
Maintenance,” http://www.qsm.com/aerialview.html, 1998.

[25] M.L. Hutcheson, Software Testing Fundamentals: Methods and Metrics,
Indianapolis, Indiana, John Wiley & Sons, Inc., 2003.

[26] F.J. Koch, “Metrics and the Immature Software Process,”
http://www.qpmg.com/metrics.htm, 2002.

[27] K.E. Wiegers, Practical Project Initiation: A Handbook with Tools, Red-
mond, WA: Microsoft Press, 2007.

[28] V. Rubenstein and J. Boria, Small Organizations, “Small Interventions,
The IT Metrics and Productivity Institute: Best Practices in Software
Development, Management, and Maintenance,”
http://www.compaid.com/caiinternet/ezine/boria-interventions.pdf, 2007.

[29] L. Westfall, (2005). “12 Steps to Useful Software Metrics,”
http://www.westfallteam.com
/Papers/12_steps_paper.pdf, 2005.

[30] R. Basili, F.E. McGarry, R. Pajerski, and M.V. Zelkowitz, “Lessons
Learned From 25 Years of Process Improvement: The Rise and Fall of
the NASA Software Engineering Laboratory,” Proceedings of the 24th In-
ternational Conference on Software Engineering, ACM Press, pp. 69–79,
2002.

98

Int.J. of Software Engineering, IJSE Vol.5 No.1 January 2012

[31] H. Bae, “Software Process Improvement for Small Organizations,” Pro-
ceedings of the 31st Annual International Computer Software and Appli-
cations Conference, IEEE Press, 2007.

[32] K.C. Dangle, P. Larsen, M. Shaw, and M.V. Zelkowitz, “Software
Process Improvement in Small Organizations: A Case Study,” IEEE
Software, pp. 68-75, November 2005.

[33] J.G. Brodman and D.L. Johnson, “A Software Process Improvement Ap-
proach Tailored for Small Organizations and Small Projects,” Proceed-
ings of the 19th International Conference on Software Engineering, ACM
Press, 1997.

[34] I. Richardson and C.G. von Wangenheim, “Why Are Small Software Or-
ganizations Different?” IEEE Software, pp. 18-22, January 2007.

[35] D.P. Kelly and B. Culleton, “Process Improvement for Small Organiza-
tions,” Computer, pp. 41-47, October 1999.

[36] K. Kautz, “Making Sense of Measurement for Small Organizations,”
IEEE Software, pp. 14-20, March 1999.

[37] L. Hochstein, V.R. Basili, M.V. Zelkowitz, J.K. Hollingsworth, and J.
Carver, “Combining Self-reported and Automatic Data to Improve Pro-
gramming Effort Measurement,” Proceedings of the 10th European
Software Engineering Conference, ACM Press, pp. 356-365, 2005.

[38] Y. Chen, R.L. Probert, and K. Robeson, “Effective Test Metrics for Test
Strategy Evolution,” Proceedings of the 2004 Conference of the Center
for Advanced Studies on Collaborative research, IBM Press, pp. 111-
123, 2004.

[39] R. Basili, “Software Modeling and Measurement: The
Goal/Question/Metric Paradigm (CS-TR-2956, UMIACS-TR-92-96),” Col-
lege Park: University of Maryland.

[40] J. Iversen and L. Mathiassen, “Lessons From Implementing a Software
Metrics Program,” Proceedings of the 33rd Hawaii International Confe-
rence on System Sciences, IEEE Press, 2000.

[41] Software Productivity Center, Inc., “Resources Metrics,” Vancouver, BC,
Canada, http://www.spc.ca/resources_metrics.htm, 2010.

[42] McCabe Software, Inc., Columbia, MD, http://www.mccabe.com/iq.htm.

[43] Microguru Corporation, SLOC Metrics, Carlsbad, CA,
http://slocmetrics.com, 2010.

