
Proposed Method for Computing
 Interprocedure Slicing

Lipika Jha (1) and Dr. K.S. Patnaik (2)

(1) Department of Computer Science and engineering, Birla Institute of Technology,
Mesra, Ranchi(India)

E-mail: lipika@bitmesra.ac.in

(2) Department of Computer Science and engineering, Birla Institute of Technology,
Mesra, Ranchi(India)

E-mail: ktosri@gmail.com

ABSTRACT

Program slicing was originally introduced by Mark Weiser, is useful in program
debugging, automatic parallelization, software maintenance, program
integration etc. It is a method for automatically decomposing programs by
analyzing their data flow and control flow reduces the program to a minimal
form called “slice” which still produces that behavior. Interprocedure slicing is
the slicing of multiprocedure program .In this paper a new method or algorithm
(IP algorithm) is introduced for the interprocedure static slicing of structured
programs. The most time consuming part of the interprocedure slicing
methods is the computation of transitive dependences (i.e. summary edges)
due to the procedure calls. Horowitz et al. [8] introduced an algorithm based
on attribute grammar for computing summary edges. Reps et al. [7] and
Istavan [9] defined an improved algorithm for computing summary edges
representing interprocedural dependences at procedure calls. Here in this
paper we discuss the improved interprocedure slicing algorithm (IP) algorithm,
which is faster than previous algorithm and takes less memory space.

Keywords: control dependence, data dependence, data flow equation, system
dependence graph

1- INTRODUCTION

The slice of a program with respect to program point p and variable V consists
of all statements and predicates of the program that might affect the value of
V at point p. A slicing criterion is a pair (p, V) where p is a program point and
V is a variable which affect or affected by the value of the variable in program
P. This concept was originally discussed by Mark Weiser [5]. Slicing can help
a programmer to understand complicated code, can aid in debugging,
software maintenance and can be used for automatic parallelization. Slicing
can be classified according to whether they only account for dependencies
inside a single procedure (intraprocedure slicing) or can handle slicing across

Proposed Method for Computing Jha and Patnaik

83

boundaries (interprocedure slicing) Weiser used the directly-affects relation
that is data and control dependence to compute monolithic procedure (i.e.
intraprocedure slicing). Ottenstein and Ottenstein used the program
dependence graphs for intraprocedure slicing. According to Ottenstein [3], the
slicing problem is simply a vertex-reachability problem, and thus slices may be
computed in linear time. For interprocedure slicing, the slicing criteria is
extended to the called procedure and calling procedure. Horowitz, Reps and
Binkley hence forth referred as HRB extended [8] this program dependence
graph (PDG) to system dependence graph (SDG) for computing
interprocedure slicing. Interprocedure slicing is generating a slice of an entire
program, where the slice crosses the boundaries of procedure calls.

 This paper is concerned with the problem of interprocedure slicing. In the
concept of system dependence graph (SDG) [3] was introduced to construct
the control-flow and data-flow representations of programs. The most time-
consuming part of this approach is the computation of the transitive
dependences due to the procedure calls (interprocedural dependences).Reps
et al. [7] and Istavan [9] defined an improved algorithm for computing
summary edges representing interproceural dependences at procedure calls.
Here in this paper we discuss the improved interprocedure slicing algorithm
(IP) algorithm, which is faster than previous algorithm and takes less memory
space. The IP algorithm therefore is optimal.

This paper is organized as follows. Section 2 discusses about the techniques
to compute interprocedure slicing. Section 3 elaborates the proposed
algorithm (IP algorithm) .Section 4 discusses the comparative analysis of
different algorithms and its complexity followed by conclusion and references.

2- BACKGROUND

2-1 DATA FLOW EQUATION

Weiser’s definition [2] of program slicing is based on iterative solution of data
flow equations. He extended his work for interprocedure slicing [4] which
involves three separate tasks:

· First, interprocedure summary information is computed. For each
procedure P, a set MOD(P) and USE(P) is computed

· The effect of call-statements on the sets of relevant variables and
statements are computed using the summary information. A call to procedure
P is treated as a conditional assignment statement ‘if <SomePredicate> then
MOD(P) := USE(P) where actual parameters are substituted for formal
parameters.

· The third part is to generate new slicing criteria for called and calling
procedure with respect to which intraprocedure slices are computed.
For each procedure P, new criteria are generated for

Int. J. of Software Engineering, IJSE Vol. 6 No. 1 January 2013

84

(i) procedures Q called by P-the criteria consists of all pairs

(,)Q Qn V , where Qn is the last statement of Q and QV is the

set of relevant variables in P in the scope of Q (formals are
substituted for actual) which is denoted by DOWN (,)Q Qn V ,

(ii) procedures R that call P-the new criteria consist of all pairs

(,)R RN V such that RN is a call to P in R, and RV is the set

of relevant variables at the first statement of P that is in the
scope of R (actual are substituted for formal)which is denoted

by UP (,)R RN V .

Program Example
 Procedure Add (a, b)
 begin begin
(1) read(n); (11) a := a + b;
(2) i := 1; end
(3) sum := 0;
(4) product := 1; procedure Multiply(c, d)
(5) while i<=n do begin
begin (12) j := 1;
(6) Add(sum, i); (13) k := 0;
(7) Multiply(product,i); (14) while j< d do
(8) Add(i, 1) begin
end; (15) Add(k, c);
(9) write(sum); (16) Add(j, 1);
(10) write(product); end;
end (17) c := k
 end

Figure 1 Example of a multi-procedure program

According to the Weiser’s terminology to compute interprocedure slicing:

(i) Compute MOD() and USE() for each procedure of P using data
flow analysis

(ii) The extended criterion for Q is

 (, ())Q
e F A Qn ROUT i SCOPE® Ç

(1)

Where Q
en is the last statement in Q, F A® means substitute formal for

actual parameters, QSCOPE is the set of variables accessible from the scope

of Q, and

Proposed Method for Computing Jha and Patnaik

85

 ()() ()j SUCC i CROUT i R jÎ= È

(2)

(iii) Third step is to create new criteria for all procedures called by P,
DOWN(P) and all the procedures who called P the slicing criteria denoted as
UP(P).

The problem with Weiser’s method is the generation of too many criteria
which are extraneous to the program. Weiser’s algorithm does not produce as
precise slice because transitive closure fails to account for the calling context
problem.

2-2 DEPENDENCE GRAPH

Weiser,s UP/DOWN relations [3], for computing interprocedure slicing
generates the unprecise slice He uses iterative data-flow control flow which is
not suited to the PDG/SDG in which slices can be taken only where a variable
is defined or referenced. Horwitz, Reps, and Binkley (HRB) [7] used system
dependence graph for computing interprocedure static slices.

A SDG contains a program dependence graph for the main program, and for
each procedure. Using this model, data dependences between procedures
are limited to dependences from actual-in vertices to formal-in vertices and
from formal-out vertices to actual-out vertices. Connecting procedure
dependence graphs to form a system dependence graph is straightforward,
involving the addition of three new kinds of edges:
(1) a call edge is added from each call-site vertex to the corresponding
procedure-entry vertex;
(2) a parameter-in edge is added from each actual-in vertex at a call site to
the corresponding formal-in vertex in the called procedure;
(3) a parameter-out edge is added from each formal-out vertex in the called
procedure to the corresponding actual-out vertex at the call site. (Call edges
are a new kind of control dependence edge; parameter-in and parameter-out
edges are new kinds of data dependence edges.)

Another advantage of this model is that flow dependences can be computed
in the usual way, using data-flow analysis on the procedure’s control-flow
graph. The control-flow graph for a procedure includes nodes analogous to
the actual-in, actual-out, formal-in and formal-out vertices of the procedure
dependence graph. A procedure’s control-flow graph starts with a sequence of
assignments that copy values from call temporaries to formal parameters and
ends with a sequence of assignments that copy values from formal
parameters to return temporaries. Each call statement within the procedure is
represented in the procedure’s control-flow graph by a sequence of
assignments that copy values from actual parameters to call temporaries,

Int. J. of Software Engineering, IJSE Vol. 6 No. 1 January 2013

86

followed by a sequence of assignments that copy values from return
temporaries to actual parameters. We assume that all actual parameters are
copied into the call temporaries and retrieved from the return temporaries.

The Horowitz slicing algorithm consists of the three steps:
1. Create System Dependence Graph (SDG), a graph representation for multi-
procedure programs.
2. The computation of interprocedural summary information that is to create
summary edges between the vertices and show the transitive dependence
relation.
3. A two-pass algorithm for extracting interprocedure slices from an SDG.

The two pass for extracting interprocedure slicing are:
Pass 1 follows flow edges, control edges, call edges, and parameter-in edges,
but do not follow def-order edges or parameter-out edges.
Pass 2 follows flow edges, control edges, and parameter-out edges, but does
not follow def-order edges, call edges, or parameter-in edges.
The system dependence graph and its associated algorithms solve the entire
earlier problem all at once. This is why it is superior representation of the
program. The HRB algorithm computes the precise slice but it needs the
knowledge of attribute grammar for finding the transitive dependence edges
and it is very complex and lengthy.

2-3 AL ALGORITHM

The AL algorithm [1] also uses the SDG representation for slicing. This
improves upon the HRB algorithm which in the worst case traverses an edge
twice. The AL algorithm maintains a three valued tag that helps in
distinguishing the calling context as well as identifying the vertices in the slice.
Like HRB algorithm it maintains a Worklist of vertices that have been marked
so far and as vertices are traversed they are tagged (T, U, S). Contrast this
with the HRB algorithm’s use of tags with two values: marked and unmarked
.In the beginning of the AL algorithm all vertices in the slicing criterion are
placed in the Worklist and are assigned the tag T. All other vertices are
assigned the tag U. At the end of the algorithm all vertices whose tags (T,S)
are in the slice. The traversal requires picking each edge e w v= ® in the
SDG corresponding to a vertex v in the Worklist and deciding:

1. Whether w should be put in the Worklist and, if so,
2. What the value of its tag should be.

When traversing Intra edges (i.e. within the PDG) the tag at the target vertex
of the edge is propagated to the vertex at the source. This is not however the
case when From-To and To-From edges are traversed. A From-To edge
(called to caller) is not traversed if the tag of the target vertex is not T. When it
is traversed the tag T is propagated to the source vertex. A To-From edge
(caller to called) is always traversed. Irrespective of the tag of its target vertex

Proposed Method for Computing Jha and Patnaik

87

a tag is propagated to its source vertex. The source vertex is put in the
Worklist only if its tag changes.
3- IP ALGORITHM

Firstly, the weiser’s data flow equation was used for computing interprocedure
slicing. Then Horowitz introduced the concept of SDG, summary edges and 2
pass algorithm. AL uses the SDG, summary edges and one pass algorithm.
For computing summary edges lots of time is required which overall reduces
the speed of slicing. For increasing the speed of slicing a no. of algorithm [7],
[9] was introduced for computing summary edges. Till now lots of work has
been done to reduce the time to compute summary edges. The algorithm
which uses the SDG requires computing summary edges. In IP algorithm we
don’t require the SDG for computing slice. Here we will have the PDG for
each procedure and the PDG will be connected with each other using call-
entry and call-site vertex. Like HRB algorithm [1] it also maintains a worklist of
vertices that have been marked so far and as vertices are traversed they are
tagged. The IP algorithm uses the set {T, I, B} of three tags, T for visited
vertex, I for sliced vertex and B for unvisited vertex.IP algorithm for
interprocedure slicing is given in figure 2.

Procedure IP_slicing_algorithm (G,S)
declare
 G = system dependence graph
 Set = set of sliced vertices
 Worklist = set of vertices
begin
 Worklist=v
 mark tags of all vertices to B
 While Worklist ≠ ø
 select and remove a vertex v from Worklist
 If v ≠ T
 mark the tag T to v
 If v =procedure and USE(P)=MOD(v) then
 mark the tag I to v
 put v in Set
 for each vertex w such that edge e w v= ® in G
 Worklist=w
 Add slicing vertex a and called proceure p to Worklist
 else if v ≠ procedure then
 mark the tag I to v
 put v in Set
 for each vertex w such that edge e w v= ® in G
 Worklist=w
 end if
 end while
end

Figure 2 IP Algorithm

Int. J. of Software Engineering, IJSE Vol. 6 No. 1 January 2013

88

In IP algorithm we create the SDG without including the
parameter_out vertex and parameter_in and parameter_out
include the call site vertex and entry vertex.

Figure 3 System Dependence graph of Figur

criteria(10,product)

In IP algorithm we create the SDG without including the parameter_in,
parameter_out vertex and parameter_in and parameter_out edges. Here we

System Dependence graph of Figure 1 based on slicing
criteria(10,product)

Proposed Method for Computing Jha and Patnaik

89

MOD(P)=i,n,product USE(P)=i,n,product
MOD(Add(sum,i))=a USE(Add(sum,i))=a,b
MOD(Multiply(product,i)=j,k,c
USE(Multiply(product,i)=j,k,c,d
MOD(Add(i,1))=a USE(Add(i,1))=i
MOD(Add(sum,i))=a USE(Add(sum,i))=a,b
MOD(Add(k,c))=k USE(Add(k,c))=k,c
MOD(Add(j,1))=j USE(Add(j,1))=j

Table 1 Application of IP algorithm for slicing the SDG of figure 1 at vertex set {10}.The

first column shows the Worklist. At each iteration the first element form the list is selected
that is denoted by V column. The marked columns specify the marked tag of the vertices.
Next column specify the inedge vertices of the respective vertices. The last column gives

the number of edges traversed in the previous iteration.

Wor
klist

Vertices Marked Set Inedges vertices No. of
Edges
Traver
se

10 10 T,I 10 7,4 -
7,4 7 T,I 10,7 5,4,2 2
4,5,
2,13
,19

4 T,I 10,7,4 0 5

5,2,
13,1
9

5 T,I 10,7,4,5 6,7,8,1,2 0

2,13
,19,
6,7,
8,1,
2,

1 T,I 10,7,4,5,2 0 5

13,1
9,6,
7,8,
1

13 T,I 10,7,4,5,2,13 7 0

19,6
,7,8,
1

19 T,I 10,7,4,5,2,13,19 13,15,17 1

6,7,
8,1,
15,1
7

6 T 10,7,4,5,
2,13,19

- 3

8,1,
15,1
7

8 T,I 10,7,4,5,2,13,19
,8

5 0

1,15
,17,
11,1
2

1 T,I 10,7,4,5,2,13,19
,8,1

- 2

15,1
7,11

15 T,I 10,7,4,5,2,13,19
,8,1,15

13 -

Int. J. of Software Engineering, IJSE Vol. 6 No. 1 January 2013

90

,12
17,1
1,12

17 T,I 10,7,4,5,2,13,19
,8,1,15,17

16,15 1

11,1
2,16
,15

11 T,I 10,7,4,5,2,13,19
,8,1,15,17,11

6,8 2

12,1
6,15

12 T,I 10,7,4,5,2,13,19
,8,1,15,17,11,12

11 2

16,1
5

16 T,I 10,7,4,5,2,13,19
,8,1,15,17,11,12
,16

14,13 1

15,1
8,14

15 T,I 10,7,4,5,2,13,19
,8,1,15,17,11,12
,16,15

13 2

18,1
4

18 T,I 10,7,4,5,2,13,19
,8,1,15,17,11,12
,16,15,18

14,16 1

14 14 T,I 10,7,4,5,2,13,19
,8,1,15,17,11,12
,16,15,18,14

13 2

- - - 10,7,4,5,2,13,19
,8,1,15,17,11,12
,16,15,18,14

- 1

Total edges traversed : 30

The vertex at the Set column contains all the sliced vertex of a program 2.

4- COMPARATIVE ANALYSIS BETWEEN HRB, AL AND IP

ALGORITHM

For computing interprocedure slicing the HRB algorithm uses two pass
algorithms and the AL algorithm uses the one pass algorithm but it requires lot
of time to compute summary edges. Our algorithm doesn’t require any summary
edges it compute slices based on the intra_edges. Depending on the
intra_edges of the vertices, the vertices are traversed. For figure 3 the number
of edges traversed by each of this algorithm is:

HRB: 78 edges traversed
AL : 50 edges traversed
IP : 30 edges traversed

From the above data we can see that number of edges traversed in case of IP
algorithm is minimum. But it takes extra effort to check each vertices that it is a
call site vertex or not and to compute MOD() and USE() for each procedure.

Here below we have taken two examples and compute the total number of
edges traversed for computing interprocedure slicing using the IP algorithm.

Proposed Method for Computing Jha and Patnaik

91

Example1:

procedure Main procedure A(a, b)
Increment(z)
 begin begin
Add(z,1);

(1)sum=0; (6) call Add(x,y);
 (2)i=1; (7) call Increment(y);
 (3)while(i<11) end
 (4) call A(sum,i); procedure Add(a,b)
 (5)print(sum); (8) a=a+b;
end end

Figure 4 Program to display the value of sum. The slicing criteria is (

Figure 5 System Dependence graph of figure
sum)

(a, b) procedure

 (9) call

call Add(x,y); end
call Increment(y);

ocedure Add(a,b)

Figure 4 Program to display the value of sum. The slicing criteria is (4, sum)

of figure 4 based on slicing criteria (4,

Int. J. of Software Engineering, IJSE Vol. 6 No. 1 January 2013

92

Table 2 Table for computing total number of edges traversed during slicing in
figure 5

Total edges traversed : 6

The vertex at the Set column contains all the sliced vertex of program in
Example 1.

Example 2:
prcocedure Main procedure P1(x,y) procedure
P2(xy)
begin begin begin
(1)a=1; (5) if(y==0) (8) if(xy==0)
(2)b=0; (6) call P2(x); (9) call
P2(xy);
(3)call P1(a,b); (7)y=y+1; (10)
xy=xy+1;
(4)z=b; end end
end

Figure 6 Program to display the value of sum. The slicing criteria is (4, sum)

Worklist Vertices Marked Set Inedges
vertices

No. of
Edges

4 4 T,I 4 1,5 2
1,5 1 4,1 -
5 5 4,1,5 3 1
3,7 3 T,I 4,1,5,3 2 1
7,2 7 4,1,5,3,7 5 1
2,10 2 4,1,5,3,7,2
10 10 4,1,5,3,7,2,10
8 8 4,1,5,3,7,2,10,8 6 1
6,9 6 4,1,5,3,7,2,10,8
9 9 4,1,5,3,7,2,10,8,9

Proposed Method for Computing Jha and Patnaik

93

Figure 7: System Dependence graph of figure 6

Table 3 Table for computing total number of edges traversed during slicing in
figure 7

Worklist Vertices Marked Set

7 7 T,I 7
3 3 T,I 7,3
2 2 T,I 7,3,2
1 1 T,I 7,3,2,1

 Total edges traversed :
The vertex at the Set column contains all the sliced vertex of a program 2.

From the above two example we can conclude that using the
no. of edges traversed for computing slicing is less. Whereas in case of HRB
and AL algorithm we have to first create SDG with detail of all parameter edges
and for computing slicing we have to traverse from some of these parameter
edges. So the number of edges will be larger in the both HRB and AL algorithm.

figure 6 based on slicing criteria(7,y)

Table for computing total number of edges traversed during slicing in

Inedges
vertices

No. of
Edges

3 1
2,1 2

Total edges traversed : 03
The vertex at the Set column contains all the sliced vertex of a program 2.

From the above two example we can conclude that using the IP algorithm the
of edges traversed for computing slicing is less. Whereas in case of HRB

and AL algorithm we have to first create SDG with detail of all parameter edges
and for computing slicing we have to traverse from some of these parameter

So the number of edges will be larger in the both HRB and AL algorithm.

Int. J. of Software Engineering, IJSE Vol. 6 No. 1 January 2013

94

The space complexity of HRB and AL will be larger because we require a larger
space to store the whole SDG. Whereas in case of IP algorithm we can
separately store the pdg and connect the pdg with call procedure

 The complexity of computing an interprocedure slice using SDG may be
separated into the complexity of constructing the SDG and that of traversing this
graph to identify statements in a slice. Horwitz [7] have analyzed that the cost of
constructing SDG is polynomial in various parameters of the system and that
the cost of traversing the SDG is bounded by the size of the SDG.A more
precise complexity of the traversal algorithm may be derived as a function of the
number of edges in the final slice. Let E be the number of edges in the SDG of
the slice with respect to vertex set S. The IP algorithm contains less number of
edges in the slice and it traverses edges at most one time.

5- CONCLUSION

This paper presents an algorithm that improves upon the interprocedure slicing
algorithm presented by Horwitz, Reps, and Binkley [7] and AL (1) algorithm. Our
algorithm has the same order of complexity but with an improved constant.
Instead of the two traversal of edges performed by HRB algorithm, our algorithm
may be implemented to perform a maximum of one traversal one per edge.
Here the SDG we have created will not contain parameter_in, parameteter-out
edges and vertices. This paper has been presented with a view to reduce the
complexity to compute the interprocedure slicing .Weiser’ s method to compute
interprocedure slicing [3] was easy but it also extract irrelevant statement.
Horowitz method [7] was precise slice but was very complex and time
consuming. Here in this paper we have proposed a new method for computing
interprocedure slice but it has not been implemented anywhere yet. The
algorithm is not tested using any testing pattern. Testing part we have planned
as our future work.

ACKNOWLEDGEMENT

I wish to convey my sincere gratitude and appreciation to each and every
person who helped me in writing this paper. I am grateful to my institution, Birla
Institute of Technology and my colleagues. I would especially like to thank Dr. K.
S. Patnaik, my guide for his advice and guidance.

REFRENCES

[1] A. Lakhotia, “Improved interprocedural slicing algorithm” The Center for
Advanced computer studies, University of Southwestern Louisiana,
Lafayette, LA,1992.

[2] D. Binkley and K. B. Gallagher, “Program Slicing,” Advances in Computers,
Vol. 43,No.9 pp. 1-50,1996.

Proposed Method for Computing Jha and Patnaik

95

[3] F. Tip, “A Survey of Program Slicing Techniques,” Journal of Programming
Languages, Vol. 3, No. 3, 1995, pp. 121-189.

[4] K. B. Gallagher, Computer Science Department University of Durham South
Road Durham DH1 3LE “Some Notes on Interprocedural Program Slicing,”
4th IEEE International Workshop on Source Code Analysis and
Manipulation: SCAM-4. Chicago, Illinois, 15-16 September 2004.

[5] M. Weiser, “Program Slicing,” IEEE Transactions on Software Engineering,
Vol.SE-10 16, No. 4, pp. 352-357,1984.

[6] E. MYERS, “A precise inter-procedural data flow algorithm.” In Conference
Record of the Eighth ACM Symposium on Principles of Programming
Languages (Williamsburg, Va., Jan. 26-28, 1981).ACM, New York, pp. 219-
230,1981.

[7] T. Reps, S.M. Horwitz, and G. Rosay, “Speeding up slicing” ACM SIGSOFT
Engineering notes 19(5) 11-20 December, 1994.

[8] S. Horwitz, T. Reps, and D. Binkley. “Interprocedural slicing using
dependence graphs”. ACM transactions on Programming Languages and
Systems, 12(1):35–46, January 1990.

[9] T. Gyimothy and I. Forgacs. “An Efficient Interprocedural Slicing method for
Large Programs”TR-96-106, January 1996.

Int. J. of Software Engineering, IJSE Vol. 6 No. 1 January 2013

96

