
Investigating the Practical Impact of Agile 
Practices on the Quality of Software Projects 

in Continuous Delivery 

Olumide Akerele
(1)

, Muthu Ramachandran 
(2)

, and Mark Dixon
(3)

 

(1) School of Computing, Leeds Metropolitan University (UK) 
E-mail: o.akerele@leedsmet.ac.uk 

(2) School of Computing, Leeds Metropolitan University (UK) 

E-mail: m.ramachandran@leedsmet.ac.uk 

(3) School of Computing, Leeds Metropolitan University (UK) 
E-mail: m.dixon@leedsmet.ac.uk

ABSTRACT  

Various factors affect the impact of agile factors on the continuous delivery of 
software projects. This is a major reason why projects perform differently- 
some failing and some succeeding- when they implement some agile 
practices in various environments. This is not helped by the fact that many 
projects work within limited budget while project plans also change-- making 
them to fall into some sort of pressure to meet deadline when they fall behind 
in their planned work. This study investigates the impact of pair programming, 
customer involvement, QA Ability, pair testing and test driven development in 
the pre-release and post -release quality of software projects using system 
dynamics within a schedule pressure blighted environment. 

The model is validated using results from a completed medium-sized 
software. Statistical results suggest that the impact of PP is insignificant on 
the pre-release quality of the software while TDD and customer involvement 
both have significant effects on the pre-release quality of software. Results 
also showed that both PT and QA ability had a significant impact on the post-
release quality of the software. 

Keywords - Pair programming, Pair Testing, Test Driven Development, 
Continuous Delivery, System Dynamics 

 

1- INTRODUCTION 
 

The most prioritized principle of the Agile Manifesto explicitly emphasizes on 
the frequent delivery of working software: “Our highest priority is to satisfy the 
customer through early and continuous delivery of valuable software” [1]. 
Software only offers value to customers when they are deployed into 
production and provide the necessary functionalities to the end user. It is 
therefore vital to ensure that a developed software ends up being deliverable- 
as that is the utmost goal. As Humble et al points out: 

 “It’s hard enough for software developers to write code that works on their 
machine. But even when that’s done, there’s a long journey from there to 

Investigating the Practical Impact of Agile Akerele et al

3



software that’s producing value - since software only produces value when it’s 
in production” [2].  

Software delivery suffers as a result of many post-development issues: 
Configuration management problems, lack of testing in a clone of the 
production environment and insufficient collaboration between the 
development teams and the deployment team (operations) are the major 
problems that cause software rejection at this stage [2]. An example is the 
complete failure of the software in the production environment due to 
assumptions built into previous test environments - which are different from 
the specifications of the production environment. The end result is imminent 
delivery failure. 

Such problems are the rationale for the need of the expedient continuous 
deployment of software features into a sandbox, staging or production 
environment and ensuring the system features behaves as required before 
being classified as “release candidates”. This practice is called Continuous 
Delivery (CD) or agile delivery [2]. 

Several measures have been investigated to enhance the CD process: tests 
automation, intense team collaboration, configuration management, 
deployment automation and good team culture [2][3][10]. However, these 
factors are not a surety to a smooth CD process; while there have been 
testimonies of overwhelming success with these practices - as experienced by 
Flickr and IMVU, with up to 50 deployments a day [4] -   there have also been 
instances of failures [2][19]. This shouldn’t be surprising: as is the case with 
most processes in software projects, there are many limiting factors to the 
predictability of a software process due to pre release and post release 
feature failure [5][6].  

Various interacting and interconnected factors are present in software projects 
and these are accountable for the inconsistencies in the quality of agile 
software projects [7]. According to Brooks, 

 “No one thing seems to cause the difficulty (in software projects)...but the 
accumulation of simultaneous and interacting factors....” [7] 

The impact of these factors are further exacerbated by the fact that software 
project teams face the challenge of schedule pressure-- forcing them to make 
several shortcuts and relax on QA activities so as to meet up with the planned 
schedule [2][5][6][10]. 

Refactoring of a test suite, as a practical example, has a dynamic effect on 
CD process: As the project progresses and acceptance test automation script 
increases (in size) in direct proportion to the functionalities developed, the test 
suite complexity, brittleness, as well as coupling increases -- gradually 
introducing test smell into the test suite[11].  

This is further exacerbated by the influence of schedule pressure and 
developers respond to such by taking shortcuts, thereby, ignoring the test 
coding standards and procedures [6]. The test smell effect is a major 
detriment to the design of the test cases. The directly proportional relationship 

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

4



between these two has a ripple effect on the build time to run the acceptance 
test suite- hence putting the project at risk of late delivery at an increased cost 
[10]. However, after refactoring the test suite, there is a significant drop in the 
test suite maintenance effort due to the improved design of the test scripts [2]. 
Refactoring, of course comes at a cost of extra effort. This exemplifies the 
continuous active dynamics in a typical agile software project. 

These behaviors as described in the above examples as well as their impact 
on the quality of the pre-release and post-release software quality within the 
CD process have not been studied in any context. This makes it difficult for 
organizations to anticipate the influence of their actions on a CD process. 
Also, without such understanding of how these factors affect software 
delivery, it would be difficult for teams to maintain a steady delivery process 
and optimizing their available resources.  

Furthermore, studying the impact of these factors in a "perfect" environment 
free of any budget or schedule pressure will yield less realistic results. Most 
software project at some point are faced with pressure to try and catch up 
when unexpected occurrences suffice in projects, therefore, impeding their 
productivity and making them fall behind schedule [2][5].It is therefore vital to 
study the behavior of these factors in such a realistic environment.  

 It is the goal of this research to develop a System Dynamics (SD) [8] model to 
study the dynamic effects of these investigated variables within the delivery 
lifecycle and their relative impact on the pre-release and post-release quality 
of software in a software project environment susceptible to schedule 
pressure. This work focuses on evaluating the effectiveness of critical agile 
factors, specifically: Pair programming (PP), Test Driven Development (TDD), 
Pair Testing (PT) and QA Ability within such a complex continuous delivery 
system. 

SD stands out as the best approach for this study as it provides the leeway to 
alter the constituting variables within software projects and observing the 
behavior and evolvement of software projects over a period of time. Vensim 
[9], a SD software is used for this research work. 

 

2- RELATED WORK 
 

The works related to this research are extensive and span across both 
empirical and simulation based approaches to studying processes in software 
development.  

 

2-1 EMPIRICAL APPROACH 
 

Poole and Huisman [12] conducted a case study at Iona technologies to 
evaluate the impact of XP adoption on the maintenances efficiency of a 
middleware product called "Orbix". The firm applied all the outlined XP 

Investigating the Practical Impact of Agile Akerele et al

5



techniques except the "40-hour week" to carry out maintenance on a legacy 
product and comparisons were made. Remarkably, they observed a 67% 
improvement in their iteration team bug- fixing productivity. However, the 
impact of each practice were not individualized. 

Maurer and Martel [13] carried out a case study in a company specialized in 
web application product development - analyzing a completed development 
project involving nine programmers and lasted for 16months. Version one of 
the product was developed without any XP technique and lasted nine months 
while the second version was developed using all the XP technique lasted 5 
months. Gains in productivity of 63%, 302% and 283% were realized in 
NLOC/effort, number of methods/effort and number of classes/effort 
respectively for the second version of the product. However, while the 
bugs/effort productivity ratio was reduced by 5%, the average code size of the 
second version was significantly more. Similar to Poole and Huisman's work 
[12], the individual impact of these practices were not identified. 

Hodgetts and Philips [14] also carried a case study at an internet BRB 
company on two versions of a software product. Version one, utilizing 21 
developers and lasting 20months and was developed without any agile 
methods while the second version utilized 4 developers and lasting 12 months 
was conducted with the 12 XP practices.  The following results were recorded 
favoring the version 2 of the product: 80% reduction in development cost, 
albeit the result is clouded by the fact version two project consisted of more 
experienced developers; 70% reduction in defect density and the defects 
detected were also of less severity; 54% reduction in cyclomatic complexity of 
methods; 48% reduction in average loc/method ; 67% reduction in code size 
;73% in methods/size which is an indication of improved decoupling and 
cohesion in the system. 

Wood and Kleb [3] conducted a pilot project consisting of two release cycle of 
three iterations to evaluate the impact of agile practices at the NASA Langley 
Research Center by conducting a pilot project and adopting the 12 
established XP practices. Analysis of the pilot project metrics showed that 
productivity was doubled when compared to similar completed projects 
developed without any of the practices. Better code design was also recorded 
due to improved readability and reduction in code size by approximately half 
the size. 

Drobka et al [23] also conducted four pilot projects written in C++ by four 
different teams using 10 XP practices over an 18month period. A survey was 
sent to 29 of the participants in the project and their responses showed the 
participants felt XP boosted their work morale, reduced their project learning 
curve, improved their productivity and test coverage as well as quality and 
maintainability. Analyzing the quantitative data showed improvement in 
productivity ranging from 265% to 385% of waterfall projects. 

These works lack the main focus on the impact of these factors on the 
behavioral quality of the software. In addition, none of these works considers 
the impact of the factors on the post-release quality of the software product. 

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

6



Most importantly, none of the works mentions the telling impact of schedule 
pressure on the QA and agile practices and the consequential impact on the 
quality of the developed software.  

 

2-2 SIMULATION APPROACH 
 

Abdel-Ahmed [5] pioneered the application of SD for software process 
simulation modeling (SPSM) [6]. He investigated the effect of various 
management policies on development cycle time, quality and effort were 
presented. His works however adopt the waterfall methodology approach 
which limits their applicability in recent software project and more importantly, 
does not focus on the actual delivery process of software. 

Melis et al [16] investigates the efficacy of Test Driven Development (TDD) 
and PP using both SD and discrete event simulation- giving him the flexibility 
to introduce some randomness in the data input. The research was focused 
on the impact of these factors on the project effort and post-release defect 
density. These practices were investigated as standalone practices and the 
interactivity and dependence of these on other agile practices on the 
important risk variable outputs in agile projects are ignored.  

Cao [21] studied the dynamics of agile software projects and the inter-
relationship within the practices and variables. The author used relevant 
literature and interviews to develop and calibrate the full model. Validated both 
structurally and behaviorally, the model results suggest the cost of change in 
agile projects is actually cyclical due to the level of refactoring of the project 
and not flat as reported in literature [25][26]. The author also concluded that 
inefficient refactoring reduces team productivity and increases the cost of the 
project on the long run.  

Kuppuswami et al [24] developed a SD model to investigate the effects of XP 
practices on project effort. An exploratory experiment was carried out on the 
model and results showed “On-site Customer" had the highest impact on the 
project effort while "refactoring" had the least impact. The author limited the 
scope of this paper to the impact of agile practices on solely project effort and 
ignored other crucial factors like quality.  The author also makes some 
unrealistic assumptions in the model which questions the believability of the 
results. Furthermore, details of the parameterization of the model variables 
are vague. The authors went further to explore this model [25] in validating 
Beck’s hypothesis related to the constant cost of change in XP. Beck claimed 
“when all XP practices are adopted are recommended, the cost of change in 
an XP project is nearly same irrespective of the time in which a request is 
introduced”. [26] 

Though some of these works are contemporary and consider agile practices, 
their scope is limited to the activities on the developer site and do not consider 
the actual delivery process. Also, the quality of the software is not evaluated in 
the context of the system behavior. 

Investigating the Practical Impact of Agile Akerele et al

7



Hitherto, to the best of the author’s knowledge, there hasn’t been any 
published work investigating the dynamics and impact of various factors, 
particularly agile practices, on the pre-release and post-release quality of an 
agile CD process. 

 

3- RESEARCH FOCUS 
 

The CD phase is initiated when the development team makes a commit to the 
repository and culminates when the push button for deployment into the 
production environment is activated – usually by the operations team. A push 
button in this context doesn’t literally mean a physical button; it is an adopted 
metaphor in the industry that describes an achievable action by a simple click. 
The scope of this research thus goes beyond the on-site acceptance testing 
stage; it protrudes to the actual delivery of features in the production 
environment.  

The aim of this research work is to develop a SD model to facilitate a 
repetitive and predictable delivery process of software while enabling users to 
have complete control over the delivery risk factors such as quality, cost and 
schedule flaws. To achieve this, full investigation is to be carried out to 
determine the pertinent factors that have an effect on the quality outcome of 
the CD process. In particular, full investigation of the direct and indirect effects 
of critical agile practices on these advocated CD practices within the delivery 
pipeline [17] are carried out. 

The delivery pipeline [17] encapsulates a series of four stages depending on 
the extent of testing required by the application. We investigate a generic 4-
tier deployment pipeline in our research which could be further modified to fit 
each varying project requirements: Commit stage, Automated Acceptance 
Testing (AAT), User Acceptance Testing and Release to Production. The 
focus lies on the two testing stages within the delivery pipeline. The 
corresponding deliverables of each stage are represented in figure 1 below. 

 

Figure 1 The delivery pipeline artifacts 

 

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

8



3-1 RESEARCH GOAL 
 

CD lays a strong emphasis on automation of the build pipeline. Humble et al 
[2] asserts that without automation, the delivery process is not repeatable and 
predictable. This is somewhat true. However, facts have shown that even with 
automation and adoption of other “prerequisites” for a smooth CD process, the 
results are not always a success and performance in different contexts vary 
significantly [18][19][27][60]. 

Numerous factors are responsible for the variation of results in software 
projects. Madachy [6] presents over 200 active factors that cause instability on 
outputs of software projects. This is where this research work comes in: to 
ensure predictability and controllability of quality of an agile CD project. 

The goal of this work is to develop a SD model to act as a tool for the delivery 
pipeline to ensure a repetitive, predictable and risk-free CD activity for 
software projects. SD is chosen as the best approach to realizing the goal of 
this paper as it enables the full design, analysis, and simulation of the 
software process – fully representing the complexity of the system. The 
developed model will promotes achieving a fully controllable delivery 
environment and helps management anticipate the results of their deliberate 
actions.  This model will act as an invaluable tool to project managers, release 
managers and senior management of software development organizations 
interested in the planning an actualizing frequent release of their software to 
customers.  

 

3-2 RESEARCH QUESTIONS 
 

This paper work is aimed at answering the following major Research 
Questions (RQ): 

RQ1: What are the key factors impacting the success of CD? What are the 
agile practices having an impact on the quality of software projects in the CD 
process? 

RQ2: What are the dynamic and causal effects of each of these factors on the 
software quality in CD? 

RQ3: What is the impact of schedule pressure on key factors in CD of agile 
software projects? 

RQ4: What is the impact of agile practices, specifically, on-site customer, 
TDD, PP and Pair Testing (PT) on the pre-release and post - release quality 
of software. What is the impact of the ability of the Quality Assurance Analyst 
(QA) on the quality of the software? 

 

 

Investigating the Practical Impact of Agile Akerele et al

9



3-3 RESEARCH OBJECTIVES 
 

The following objectives were systematically identified: 

 Investigate all the factors that have an impact on the success 
determining practices of continuous delivery. 

 Study the full dynamics of these factors and relevant agile practices 
on the continuous delivery process. 

 Design the system dynamic model for continuous delivery to provide a 
high level insight into the “actions and reactions” within the CD 
context. 

 Run simulation and compare results for validation. 

 Model experimentation for sensitivity analysis. 

 Carry out suitable hypothesis tests to determine the significance of 
the test results. 

 
 

4- RESEARCH PLAN 
 

This section describes how the objectives of the research were achieved.  

4- 1 METHODOLOGY 

Data Sources 

 Interviews: Interviews with project managers, product owners, 
developers and testers were conducted in six companies.  

 Literature review: Pertinent empirical findings from literature within the 
research topic domain were used to develop and calibrate the model. 
Search strings such as "continuous delivery (modeling)", "release 
management (simulation)" and "software system dynamics" will be 
used in digital libraries. 

 Survey: An extensive survey was developed, sent and handed out to 
a host of relevant software practitioners. Surveys were particularly 
used when it was difficult to get hold of relevant data in the literature. 
This included a host of questions that are related to the present 
practices of the delivery process. In total, 392 full responses were 
analyzed for use in this study. 

 Archived completed project data 

 

Simulation 
 

As this is carried out on real life projects, it will be impracticable to have the 
necessary leeway on the project variables using an empirical approach.  

Simulation helps to overcome the shortcomings of empirical analysis: cost, 
flexibility and time consumption [5]. It provides the computerized prototype of 

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

10



an actual system run iteratively over time to improve project understanding 
and knowledge base of project stakeholders.  

SD is the modeling and simulation platform used for this work. SD models are 
used to visualize the complexity of a system in feedback loops to study how 
the system behaves over a specified period of time [6]. Figure 2 below shows 
some basic components of a SD model. 

 

 

Figure 2 A simplistic SD model 

 

Legend: "Level" is an Entity that increases or reduces over a specified period of time 
while the "Inflow"/"Outflow" represent rate of change in level.               

Mathematically, the level/stock value above is derived by:  

level (t)= level (t-dt) + inflow * (dt)                        (1)                                                                         

A SD model has a non-linear mathematical structure of first order differential 
equations expressed as:  

         y'(t)= f(y,m)                                                 (2) 

where y represents vector of levels, f is a non-linear function and m is a set of 
parameters. 

 

5- SYSTEM DYNAMIC MODEL OF THE AGILE CONTINUOUS 
DELIVERY MODEL 

 

The full CD model is designed into two sub-models for ease of analysis: The 
schedule pressure sub-model and the delivery pipeline sub-model. Due to 
space constraints of this paper, only the schedule pressure sub-model is 
discussed in this paper. The schedule pressure sub-model is selected as it is 
smaller in scope and the model variables can be easily zoomed upon and 
explained in totality--while meeting the space constraints of this paper. 
Discussing the full delivery pipeline sub-model will consume a lot more space 
and a section of it cannot be isolated and discussed separately due to the 
complex inter-relationship within all components of the model. Details of the 
full delivery pipeline sub-model are presented in [40]. The model variables are 
italicized for easier recognition. 

 

 

level
inflow outflow

Investigating the Practical Impact of Agile Akerele et al

11



THE SCHEDULE PRESSURE SUB-MODEL 

 

Schedule pressure is defined as the ratio of the difference between the actual 
work to be done and the estimated work to be done to the estimated work to 
be done [5]. It has been recognized by many researchers as a major cause of 
project outcome inconsistencies -- making it's management crucial in software 
projects[2][5][6]. In our model, schedule pressure is calculated by the ratio of 
the work gap to the estimated work left, the work gap being the difference 
between the actual work left and the estimated work left. The formula for 
calculating schedule pressure is presented below.  

                  
                                    

                  
                                      (3) 

The estimated work left is the amount of work that should be left in the 
iteration according to the release plan while the actual work left is the 
remaining work that is yet to be done in the project. 

A negative value of schedule pressure indicates the team is very relaxed and 
well ahead of their work. This may be due to hyper-productivity, tasks 
reduction or overestimation of tasks [5][6][41].  

Software features are broken down into chunks called user stories which are 
subsequently broken down to both technical and non-technical activities called 
tasks. Due to the level of granularity needed in this model, the project work is 
estimated in tasks. User stories can have tasks ranging from 1 to 8 , 
depending on the complexity and size of the user story[41]. However, the 
average and most common number of tasks in a user story is 4 [I3][I4][43].  
Hence, in this model, a user story is estimated to contain 4 tasks. 

Effort in software development has evolved through various units of 
measurements:  man-hours [7], functional points [28], lines of code [29]. 
However, these metrics promote unscrupulous activities among team 
members [41][42]. Agile software projects adopt story points as the ideal 
metric of measurement of work output. Story points are a subjective approach 
to measuring effort in agile software projects where the scaling of one story is 
weighted relative to the other [41].  Ubiquitously, this is agreed to be the best 
representative of effort as it measures true value of work delivered [36][41]. 
Figure 3 below shows the schedule pressure sub-model. 

 

 

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

12



Figure 3 The schedule pressure sub-model 

The model contains numerous variables having direct and indirect impact on 
the two major schedule pressure level-determining variables: Estimated work 
left and Actual work left.  

Initial estimated total effort is the high-level project estimation done during 
release planning. This estimated work is then implemented in accordance to 
the iteration plan based on the velocity of the team. The initial estimated total 

effort is the product of the estimated number of stories, average effort per 
story and the requirement volatility. 

                               =                            
                                                                                              

Requirement volatility is defined as the ratio of the modified and added 
requirements to the total requirements [30]. Changing requests in software 
projects are due to changes in customer’s needs, stakeholder disagreements, 
changes in organizational goals and poor communication between customer 
and the development team [31]. Agile software projects begin with “fuzzy” and 
incompletely defined requirements and as the project evolves, the 
requirements become clearer and become more clearly defined, gradually 
fading out [31].  

The modest case of the level of requirement volatility reported was in a 
waterfall project with an average of 6%, peaking at 16.5% [32]. Humphrey [33] 
suggested projects experienced 25% requirements volatility. Stark et al [30] 
examined 7 agile software projects and estimated the requirement volatility to 
be about 48%. Melnik and Maurer [34] also reported a requirement volatility of 
between 30-50% on a typical agile project. The “fuzzy” nature of the 

estimated work left

actual work left

average
commit

productivity

requirement
volatilty

maximum tolerable

excess work gap

work gap

tasks to be
rebudgeted or

dropped

total estimated

project duration

maximum allowable
schedule slippage

multiplier

lookup for initial

estmated commit
estimated commit

rate

schedule presure

reestimation
degree of tasks to

be rebudgeted

degree of tasks

to be dropped

work deficit to be

rebudgeted

tasks to be

dropped

project policy

lookup for actual

integrated tasks

initial estimated total

work

total actual

committed tasks actual rate of
commit

<Time> total actual time left

to finish project

time exhausted

underestimated tasks

distribution

reestimates during

project

delay for SP effect

initial estimated

total effort

estimated number

of stories

average effort per

story average number of

tasks per story

customer trust

customer distrust

average days to

task ratio

workforce mix

time added

project progres

Investigating the Practical Impact of Agile Akerele et al

13

http://www.cse.chalmers.se/~feldt/courses/reqeng/papers/nurmulian_2004_analysis_of_req_volatility.pdf


incompletely defined requirements as well as the continuous admittance of 
changing requirements by the teams is responsible for this relatively high 
phenomenon in agile software projects.  

Productivity is defined as the ratio of the amount of software produced to the 
cost of producing it [32]. Mills redefines productivity as the ratio of the 
functional value created by a developed software to the cost of producing it 
[35]. In agile software development, user stories are the preferred method of 
quantifying the team’s output since each story contains minimum of a software 
functionality which is useable by the customer [36].  Productivity is calculated 
in agile projects as the ratio of the user stories to the effort of producing it.  

Since tasks are a breakdown of user stories and we need to express 
productivity in a lower level of granularity and also due to our assumption that 
all tasks developed in an iteration are "committed", the average development 
productivity equals the average commit productivity. The average commit 
productivity, hence, equals the ratio of average number of tasks per story 
"committed" to the average effort per story. 

However, the average commit productivity is moderated by the workforce mix. 
Experienced team members are suggested to be more productive than 
inexperienced or new team members. Literature reports varying ratios of 
productivity between experienced and inexperienced programmers: 0.5 [5], 
0.5 [6], 0.64[43], 0.45[44]. In our model, a ratio of 0.5 is assumed i.e 
experienced developers are twice as productive as their inexperienced 
colleagues. 

                                                                
                                                            (5) 

The initial estimated total work is the sum total of the initial estimates in tasks. 
This variable is a product of the average commit productivity and the initial 
estimated total effort. A pulse function is used for initial estimated total work in 
the simulation to provide the actual value only at the first iteration and a value 
"0" for the rest of the iterations. 

                             
                                                              
                                                                                                                                
          
Estimated work left is the sum total of the number of initial estimated work left 
minus the estimated commit rate. The estimated work left is modelled as a 
level, gradually decreasing depending on the estimated commit rate. The 
estimated commit rate is the velocity of the team as estimated during the 
release planning. A lookup function is used to simulate the estimated commit 
rate per iteration for model validation purpose. Reestimates during project are 
the major amendments to the team velocity after the project commencement. 
As the team constantly re-evaluates their velocity using “yesterday’s weather” 
[41], they make alterations to their anticipated velocity due to present or 
forecast change in circumstances.  

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

14



The actual work left is the actual amount of work left in tasks for the project. It 
is modelled as a level with an initial value equivalent to initial estimated total 
work. The actual work left decreases iteratively in the model depending on the 
actual rate of commit. The actual rate of commit of the development team is 
the actual number of tasks committed per iteration and this is assumed to be 
the number of tasks completed in the iteration. 

 The work gap is the discrepancy between the estimated work left and the 
actual work left. It expresses the extent at which the team is lagging or ahead 
of the project plan. The maximum excess tolerable work gap is a function of 
the agreed maximum allowable schedule slippage multiplier with the customer 
since the agreed schedule slippage with the customer determines the excess 
amount of work that can be accommodated if the team lags behind. The 
maximum excess tolerable work gap is a multiple of the maximum allowable 
schedule slippage multiplier and initial estimated total work. 

The tasks to be re-budgeted or dropped is the difference between the work 
gap and maximum excess tolerable work gap. It is designed with an if-then-
else function such that it has a value of "0" when the work gap equals or less 
that the maximum excess tolerable work gap and retains a value of the 
excess if the work gap exceeds the maximum excess tolerable work gap.  
This retained value is then negotiated by the project manager with the 
customer for a decision based on the features project management policy. 

Two main policies exist for managing features in agile projects: feature driven 
policy or iteration driven project [41]. A feature driven project means that the 
customer prioritizes the development of all the features at all costs without any 
compromise on the requested features. The customer is willing to extend the 
deadline date and perhaps increase the funding for all of the requested 
features to be completed. In this case, if the team is running behind schedule, 
the retained excess value is re-budgeted and the expected project completion 
date is extended with the customer.  On the other hand, an iteration driven 
project provides no flexibility beyond the agreed project completion which 
determines the maximum allowable excess work gap based on the team's 
productivity. Some organizations may also adopt both policies: while they are 
flexible to extent the project delivery date, they are only willing to do so by a 
limited extent. 

The project policy variable is designed to sum up to 100%. In the case of a 
feature driven project, the project policy variable is designed to send a value 
of 100% to the degree of tasks to be re-budgeted and sends 0% to the degree 
of tasks to be dropped. On the other hand in an iteration based project, a 
project policy value of 100% is conferred to the degree of tasks to be dropped 
and 0% is conferred on to the degree of tasks to be rebudgeted. If for example 
the organization is flexible with both policies equally, then a value of 50% 
each is assigned to variables degree of tasks to be rebudgeted and degree of 
tasks to be dropped.  

The work deficit to be rebudgeted is moderated by the level of trust the 
customer has for the team [2][30][42]. Trust is the reliance of one party on 

Investigating the Practical Impact of Agile Akerele et al

15



another party that an expectation of a certain level will be met [45]. Customer 
trust is earned over time after the customer and the team have built a healthy 
working relationship. They experience a sequence of 4 activities which earns 
the respect and trust of both parties and consequently yielding synergy in the 
team: forming, storming, norming and performing [46]. Customer trust is a 
measure of the previous performance satisfaction by both parties (customer 
an project team) [47] Customer trust is needed for the customer to authorize 
and agree any rebudget request put forward by the team. As such, despite the 
customer adopting the feature-driven approach with sufficient funds to finance 
any re-budget, not all tasks identified to be re-budgeted are ratified by the 
customer. This behaviour is corroborated by one of our interviewees (I2): 

“... .it can be a real challenge when the customer doesn't believe more time 
and resources are needed to complete the project. They may reject to support 
any resizing, not because they don't need the features or can't afford it, they 
just don't trust the team with their estimations. This is more common with 
customers dealing with us for the first time.... as time goes on, their trust for 
the team builds..." 

Measuring customer trust is a challenge as there is no established or 
published scale for measuring it. In our model, it is designed to retain a 
subjective value assigned by the project manager, ranging from 0-100%. We 
intuitively assume a linear relationship between the level of customer trust and 
the work deficit to be rebudgeted. 

                             
                                                                       

                                                              (7)                                                          

Likewise, tasks to be dropped are influenced by the management policy on 
the degree of tasks to be dropped and customer distrust (1-customer trust). All 
tasks to be dropped are removed from the actual work left in the project. This 
reduces the work gap and reduces the schedule pressure in the project. 

Time added due to re-estimation is determined by the work deficit to be re-
budgeted and the average days to task ratio. The time added due to re-
estimation is added to the total estimated project duration to update the 
expected project delivery date. The total estimated project duration is 
modelled as a level which increases the expected delivery date every time 
there are tasks to be rebudgeted.  

The project progress helps the team know how long they realistically have left 
to finish the project. It is formulated as a ratio of the time exhausted on the 
project and the total estimated project duration. The time exhausted in days is 
derived by multiplying the total actual committed tasks by the average days to 
task ratio. This value estimates the real-time progress of the team in 
percentage.  

Data got from the actual number of tasks developed is compared with the 
estimated number of tasks committed. The difference reflects the discrepancy 
of the estimation and the actual turnout of the project, which is then distributed 

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

16



across the iterations in the project. This function is represented by the 
underestimated tasks distribution variable in the simulation model.  

However, the rate of new requirements discovery isn’t uniform during the 
project lifecycle: the initial stage of agile project is with little visibility and little 
knowledge about the full outcome of the software, hence, it is customary that 
more requirements are discovered at this stage [41][48]. The underestimated 
tasks distribution, designed as a step function [6], is used to build this 
behaviour into the model. It should be noted that this variable, underestimated 
tasks distribution, was solely used for the model validation purpose. 

There is a time delay experienced before the team re-evaluates their actual 
progress and compare it to their estimated progress. After this time delay, the 
effect of schedule pressure takes effect and the teams start feeling the need 
to increase their productivity. In our model, delay for schedule pressure effect 
is the time delay variable needed for the effect of schedule pressure to take 
effect. The delay for schedule pressure effect in this model is given a value of 
1 (iteration) since iteration planning occurs at the end of the iteration.  

Table 1 summarizes the value and parameters of the major auxiliary variables 
used in the schedule pressure sub-model simulation for the project. 

Table 1 Key variable parameters in the schedule pressure sub-model 

Variables  Values 

Requirement Volatility 40% 

Initial Estimated Total Effort 882 points 

Average Effort per Story 5 points/story 

Average Commit Productivity 0.8 tasks /point 

Workforce Mix 1 

Estimated Commit Rate 40 tasks/iteration 

Maximum Allowable Schedule 

Slippage Multiplier 

7% 

Customer Trust 100% 

Degree of Tasks to be 
Rebudgeted 

100% 

Delay for schedule pressure 

effect 

1 

The project progress details were also used in the simulation of schedule 
pressure. The project details of each iteration used in the simulation are 
summarized in table 2 below. 

Investigating the Practical Impact of Agile Akerele et al

17



 

Table 2 Project work data used for schedule pressure simulation 

Iteration 

# 

Estimated  

Tasks 
Committed 

Actual 

Tasks 
Committed 

Actual  

User 
Stories 

Completed 

Actual 

Value of 
Work 

Completed

(Points) 

Production 

Code Size 
(LOC) 

1 30 20 6 62 450 

2 40 28 7 55 695 

3 40 46 11 60 1123 

4 40 44 11 51 1095 

5 40 41 10 49 960 

6 40 43 10 58 1145 

7 40 38 9 62 967 

8 40 34 8 41 888 

9 40 27 6 47 620 

10 40 25 7 50 540 

11 20 0 0 59 0 

12 40 53 14 61 1322 

13 40 55 13 65 1485 

14 40 48 12 64 1055 

15 40 46 11 60 912 

16 40 41 10 58 993 

17 40 46 12 66 1211 

18 15.6 53 15 69 1368 

19 0 56.96 17 63 1420 

 

Total 

 

705.6 

 

744.96 

 

199 

 

1099 

 

18249 

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

18



 

 The pressure influences the adoption of major practices in the model and 
consequently the outcome of the project [5][6]. Figure 4 below shows the 
simulated graphical representation of the SP experienced by the team . 

 

 

Figure 4 Project schedule pressure 

The developed schedule pressure sub-model serves as reusable tool by 
project managers to help forecast the expected "cuts" in the commitment of 
the development team to various agile practices based on the underlying 
policies of the organization. This model consequently predicts the effect of 
such schedule pressure experienced by development teams has on the 
quality expectations of the developed software. To the best of our knowledge, 
hitherto, no similar model exists to specifically address the impact of schedule 
pressure on software projects, despite the severity of the problems caused by 
schedule pressure in software development. 

  

6- VALIDATION 

 

The validation process is quite extensive and is sub-divided into two main 
stages, as described by Richardson et al: structural validation and behavioral 
validation [20]. Structural validation involves the inspection of the variables 
within the model, their calibrations and the designed inter-relationships 
between them. This is to ensure the structure of the model is “true” and 
capable of replicating real life project behaviors. Experienced project 
managers, consultants and developers were sought for this process, with 
critical feedback used to rework the model in an iterative manner until the 
structure is approved by the reviewers. The model was also presented at XP 
2013 (http://xp2013.org/) and Agile 2013 (http://agile2013.agilealliance.org/) 
conferences and valuable feedback was incorporated to rework the model. 

Investigating the Practical Impact of Agile Akerele et al

19



Behavioral validation checks the model actually produces results that are 
similar to real life projects. The model has been validated against data of 
output variables from a completed software project with similar characteristics 
that successfully implemented CD.  Details of the projects and simulation 
results are discussed in the next section of this paper. 

 

6-1 PROJECT DATA 
 

Data was sourced from a complete project that adopted CD and agile 
practices from a sales software vendor. The developed software is part of a 
comprehensive software suite used for enhancing sales of products by 
manufacturers. The project case study used for this project was the software 
development project for their sales modeling solution. Data from the project is 
presented in table 3 below: 

 

Table 3 Project information 

Programming 
Language 

Java 

Project Duration 220 working days 

Development 
Duration 

203 working days 

Iteration duration 2weeks 

Team Size 5 

Team Velocity 50 

Agile Methodology 
Used 

XP/Scrum 

Number of Stories 199 

Version Control 
System 

Subversion 

CI Server Go 

Configuration 
Management Tool 

Chef 

Unit Test 
Framework 

JUnit 

Automated 
Acceptance 

BDD 

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

20



Testing  
Framework 

Automated 
Acceptance 
Testing Tool 

JBehave 

Team Experience 
Mix 

Average of 9years 
software projects 

experience 

Working hours/day 7.5 

 

6-2 SIMULATION RESULTS 
 

Table 4 below summarizes the extracted results from the simulation model. 
"AA" denotes " automated acceptance” and "UA" denotes "user acceptance" 
in the table. Results for the automated acceptance test and user acceptance 
tests are presented graphically in figures 5 and 6. 

 

Table 4 Results comparison of actual project outcome and simulated project outcome 

Iteratio
n  

 Actual 
Passin
g AA 
test 
cases 

Actua
l AA 
Pass 
Rate 

Simulate
d  
Passing 
AA Test 
Cases 

Simulate
d AA 
Pass  
Rate 

 Actual   
Passin
g UA 
test 
cases 

Actua
l UA 
Test 
pass 
rate 

Simulate
d  
passing 
UA test 
cases 

Simulate
d UAT 
pass rate 

1 31  83.78 33.83 91.44 23 74.19 21.37 68.94 

2 40 80 44.30 88.61 26 68.4 26.58 69.96 

3 62 89.85 60.14 87.17 36 75 34.51 71.90 

4 55 82.08 59.77 89.22 39 82.9 34.95 74.39 

5 58 90.62 56.75 88.68 40 81.63 37.58 76.70 

6 63 90 62.84 89.78 50 87.71 45.15 79.22 

7 57 95 52.29 87.15 41 75.92 43.99 81.47 

8 44 83.01 46.71 88.14 48 87.27 45.77 83.23 

9 33 84.61 34.54 88.57 39 81.25 40.46 84.31 

10 42 91.30 39.50 85.89 40 90.9 36.93 83.95 

11 0 0 0 56.20 0 0 0 68.34 

Investigating the Practical Impact of Agile Akerele et al

21



12 46  63.01 53.51 73.31 35 59.32 39.38 66.76 

13 56 80 52.24 74.6 38 71.69 37.97 71.64 

14 47 75.80 46.48 74.98 41 68.33 43.43 73.33 

15 38 69.09 39.67 72.13 37 75.51 34.51 70.44 

16 43 79.62 38.64 71.56 42 76.36 37.73 68.60 

17 36 70.58 35.64 69.89 31 63.26 33.19 67.75 

18 50 76.92 46.58 71.66 35 64.81 36.69 67.95 

19 49 69.01 51.85 73.04 51 82.25 42.25 68.15 

 

 

Figure 5 Graphical comparison of actual and simulated automated acceptance test 
(AAT) pass rate 

 

 

 

Figure 6 Graphical comparison of actual and simulated user acceptance test pass rate 

 

0 

20 

40 

60 

80 

100 

1 3 5 7 9 
11

 
13

 
15

 
17

 
19

 

Actual AA 
Pass Rate 

Simulated AA 
Pass  Rate 

0 

20 

40 

60 

80 

100 

1
 

3
 

5
 

7
 

9
 

11
 

13
 

15
 

17
 

19
 

Actual UAT 
Pass Rate 

Simulated 
UAT Pass 
Rate 

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

22



The data provided in table 4 is used to examine the validity of the model by 
comparing the actual project outcome with the outcome produced by the 
developed simulation model. The actual automated acceptance test pass rate 
and simulated automated acceptance test pass rate represents the actual 
number of passing automated acceptance and user acceptance test cases 
expressed as a percentage of the total number of automated acceptance and 
user acceptance test cases and simulated number of passing automated 
acceptance and user acceptance test cases expressed as a percentage of the 
total number of automated acceptance and user acceptance test cases 
respectively. 

 Noticeably, the results from the model highly correlate with the actual project 
outcome. There were two main points of significant discrepancy in the values 
of the results for AAT results: The 1st, 2nd and 12th iteration. In the 1st and 
second iterations, the team recorded a low number of automated acceptance 
test cases due to the relatively few number of stories delivered which 
significantly reduced the total sample data for that iteration. This results in the 
high impact of the % variation between the simulated and actual results for the 
first two iterations. It is plausible to believe that the actual pass ratios for these 
iterations with low test cases are exaggerated, hence the significant difference 
in the actual simulated results. In the 12th iteration, the team had significantly 
more actual failing tests due to the impact of major refactoring in the 11th 
iteration on the passing test suite. It has been reported that that software 
project teams generally experience problems of failing tests after major 
redesign due to the coupling among various components of the software [33].  
The 11th iteration is not recognized as a non- productive iteration by the 
simulation model as the actual project progress was inhibited due to the 
management decision to carry out major refactoring. This behaviour is not 
built into the simulation model as this is a manual decision made solely at the 
discretion of the team.  

The major point of disparity in the simulated and actual pass rate in the UAT 
scenario is apparent in the 19th iteration. A possible argument for this is that 
testers tend to overlook many possible scenarios when a project is seemingly 
coming to closure and build assumptions into the system to get the project 
over with; in extreme cases, testers actually pass failing tests and are not 
really ready to find faults to avoid project extension and look forward 
celebrating project completion. This phenomenon was further attested by an 
interviewee. This phenomenon may explain the considerable disparity in the 
passing test rates in the final iteration than that projected by the simulation 
model.  

 

7- MODEL SENSITIVITY ANALYSIS FOR MODEL 
EXPERIMENTATION 
 

Experiments are performed to carry out sensitivity analysis on the model to 
determine the impact of various policies on the quality of the developed 

Investigating the Practical Impact of Agile Akerele et al

23



software by altering the planned level of adoption of the major influencing 
agile practices the major practices of interest are: PP, PT, customer 
involvement and TDD. The impact of the ability of the QA (cognitive ability and 
domain savvy) is also investigated. Schedule pressure plays a prominent role 
in the actual level of adoption of the practices. The project data used for the 
model validation is used and the level of adoption of each practice is altered.  
The model experimentation is sub-divided into two sections, to analyze results 
of these pertinent factors on the pre-release and post-release software quality 
respectively. 

 

7- 1 IMPACT OF TDD, PP AND CUSTOMER INVOLVEMNT ON PRE-    
RELEASE SOFTWARE QUALITY 

 

Specifically, the impact of TDD, PP and Customer Involvement on   the pre-
release software quality is evaluated in this work. Table 5 presents the various 
management policies are explored to observe their impact on the onsite 
automated acceptance pass rate. The efficacy of each of these practices are 
investigated independently on the pre-release quality of the software. The final 
scenario, scenario 4, occurs when all the factors are incorporated in software 
projects. Table 6 presents the simulations results of the various scenarios. 

 

Table 5 Scenarios simulated with model 

 PP TDD Customer 

involvement 

Scenario 1 100% 100% 0% 

Scenario 2 100% 0% 100% 

Scenario 3 0% 100% 100% 

Scenario 4 100% 100% 100% 

 

Table 6 below summarizes the simulations results of the various policies. 

Table 6 Quality simulation results of various pre-release team policies 

Iteration 

# 

Scenario # 

1 2 3 4 

1 38.9 64.9 85.3 97.4 

2 37.9 63.2 82.3 94.8 

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

24



3 37.3 62.4 80.8 93.4 

4 38.1 63.7 83.0 95.4 

5 37.9 63.4 82.4 94.9 

6 38.3 64.1 83.6 95.9 

7 37.3 62.3 81.0 93.2 

8 37.6 63.0 82.0 94.1 

9 37.8 63.3 82.5 94.5 

10 36.5 61.9 80.4 91.2 

11 23.5 58.7 53.6 58.7 

12 29.4 25.2 73.0 73.5 

13 30.3 56.0 73.3 75.8 

14 30.5 56.2 73.6 76.3 

15 29.1 54.7 71.3 72.8 

16 28.7 54.9 71.3 71.7 

17 27.9 53.7 69.8 69.8 

18 28.6 55.1 71.6 71.6 

19 29.2 56.1 73.0 73 

Average 33.4 58.0 76.5 83.6 

 

Table 6 above shows the relative impact of applying various managerial 
policies on the pre-release quality of the software- with the pass rate values 
rounded off to the nearest 1 decimal place.  Clearly, scenario 4 (adoption of all 
practices) provides the most beneficial results, with a mean of 83.6%. 
Scenario 1(without customer involvement) is observed to have the poorest 
results (-50.2%), suggesting it has the highest impact on the pre-release 
quality of the software. Scenario 3 (without PP) on the other hand was 
observed to have the lowest impact (-7.1%) on the AAT pass rate.  

To determine if these improvements are significant, the authors conduct a 
series of significance tests on these results for the various scenarios. The 
following null and alternate hypothesis were developed for this purpose 

Investigating the Practical Impact of Agile Akerele et al

25



Null Hypothesis,   : When a software project adopts PP, TDD and customer 
involvement in an environment susceptible to schedule pressure at some 
point during the project, there is no significant difference in the pre-release 
software quality when compared with a project without PP or TDD or customer 
involvement. 

Alternate Hypothesis,      when a software project adopts PP, TDD and 
customer involvement in an environment susceptible to schedule pressure at 
some point during the project, there is a significant difference in the pre-
release software quality when compared with a project without PP or TDD or 
customer involvement. 

To test the hypothesis, it is vital to keep all other variables constant and only 
alter the variables of interest. Intentionally, the schedule pressure is not set to 
zero so as to reduce the possibility of any exaggeration in the results, leading 
to misleading favorable conclusions. As such, as experienced in the project 
case study, some time pressure is experienced by the team just before the 
middle of project completion till the project end. This helps to realize modest 
results leading to more realistic hypothesis test conclusions. More so, the 
schedule pressure is experienced by both the "control" and "experimental" 
groups. Scenario 4 -- being the base scenario in which all the practices are 
adopted -- is the "control group" while the other scenarios where the various 
practices are altered represent the "experimental group".  

The hypothesis significance testing of data groups with normal distribution are 
best tested with standard parametric tests while data groups with dataset that 
don't follow normal distribution are best suited for non parametric tests [38]. In 
this study, the independent t test testing is adopted in the hypothesis testing of 
the normal distributed groups while the Mann-Whitney U test is used when 
carrying out hypothesis testing for two data groups not normally distributed.  

Observing the data for all the groups, the effect of SP can be easily noticeable 
with some extreme values, suggesting the data groups are not normally 
distributed and will not form a single line in a probability plot.  Shapiro-Wilk 
normality test is further carried out to determine if the dataset satisfies the 
conditions of normal distribution. The results are summarized in table 7 below. 

 

Table 7 Shapiro-Wilk normality test results for pre-release pass rate simulation results 

 µ  α  Kurtosis Calculated 

W 

Critical 

W 

p value Ho (95% 

significance) 

Scenario 1 33.41 4.93 -1.513 0.8279 0.901 0.003 Rejected 

Scenario 2 58.04 8.86 7.0 0.6069 0.901 0.000005 Rejected 

Scenario 3 76.5 7.64 1.586 0.829 0.901 0.003070 Rejected 

Scenario 4 83.58 12.36 -1.509 0.83 0.902 0.003186 Rejected 

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

26



To reject the null hypothesis in Shapiro-Wilk normality test, calculated W must 
be less than critical W. In the four scenarios, calculated W is less than critical 
W, hence, the null hypothesis is rejected in the four scenarios. This implies 
that all the data groups are not normally distributed -- confirming their 
suitability for non-parametric tests. Table 8 summaries the results of the 
Mann-Whitney U test carried out on the significance testing of the various 
policies. 

 

Table 8 Mann-Whitney U hypothesis test results for pre-release quality factors 

         Mean of Ranks      Calculated 

U 

Critical 

U ( at 
0.05) 

Hₒ 

Control 
Group 

Experimental 
Group 

Case 1 
(Scenario 
4 vs. 1) 

29 10 0 113 Rejected 

Case 2 
(Scenario 
4 vs. 2) 

28.5 10.6 10.5 113 Rejected 

Case 3 
(Scenario 
4 vs. 3) 

22.6 16.44 122 113 Cannot 
be 
Rejected 

 

 

To reject the null hypothesis in Mann-Whitney U test, the value of calculated U 
must be less that the value of critical U. The first two hypothesis results of 
case 1 (without customer involvement) and case 2 (without TDD) produced 
results of calculated U < critical U, with values  indicating a highly significant 
variation in the two medians. As such, we reject the null hypothesis for both 
cases, concluding that TDD and Customer Involvement are highly significant 
in the pre-release software quality of software projects susceptible to schedule 
pressure. On the other hand, the results of Case 3 (without PP) produced 
calculated U > critical U. Hence, there was insufficient evidence to reject the 
null hypothesis. We conclude that PP does not have a significant impact on 
the pre-release software quality of software projects prone to schedule 
pressure. 

 

7-2 IMPACT OF PAIR TESTING AND QA ABILITY ON POST-
RELEASE SOFTWARE QUALITY 

The model was further explored to determine the efficacy of identified critical 
factors impacting the post-release software quality: Pair Testing (PT) and QA 
Ability. These factors are identified via extensive literature surveys and 
interviews. The QA ability is a function of cognitive ability as well as the 

Investigating the Practical Impact of Agile Akerele et al

27



domain savvy of the QA. Various authors have investigated and confirmed the 
criticality of QA cognitive ability [49][50][51] and QA domain knowledge 
[52][53][54][55][56] on the quality of developed test cases. Psychometric and 
IQ tests are ideal for measuring a QA's cognitive ability [57][58] while the 
experience QA is investigated to be highly correlated to the domain 
knowledge of the QA [59]. For simplicity, we have categorized the QA Agility 
as "high" and "low".  

PT [39] in the context of this study is the practice of developers pairing with 
the QA alone or with both the QA and onsite customer in writing and coding 
the test cases to run behavioral examples of system features authored by the 
customer [34]. In essence, PT is not considered to have a direct impact on the 
AAT pass ratio since the test examples written by the customers are 
unequivocally defined and does not necessarily need the exploratory testing 
skill input of a second tester/ developer. Table 9 shows the various 
managerial scenarios that can be applied in software projects using these 
factors.  

 

Table 9 Scenarios for post-release model sub-section 

 PT QA Ability 

Scenario 1 No Low 

Scenario 2 Yes Low 

Scenario 3 No High 

Scenario 4 Yes High 

 

The four scenarios in table 9 are simulated individually and their results on the 
UAT pass rate multiplier are presented in table 10 below. 

 

Table 10 Simulation results for post release software quality 

Iteration 

# 

Scenario # 

1 2 3 4 

1 52.05 59.06 57.6 67.44 

2 54.02 61.61 59.69 69.86 

3 55.33 62.96 61.15 71.67 

4 59.57 68.65 65.59 75.19 

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

28



5 59.09 67.26 65.30 76.55 

6 62.39 71.54 68.78 79.63 

7 61.06 68.95 67.61 78.73 

8 62.27 70.31 68.90 80.21 

9 64.75 73.64 71.40 83.56 

10 63.6 71.35 69.75 80.36 

11 61.5 66.42 66.30 72.91 

12 60.1 63.36 63.92 68.23 

13 61.78 66.37 66.74 73.09 

14 61.05 65.22 65.98 71.87 

15 60.91 64.51 65.46 70.49 

16 59.76 62.49 63.63 67.42 

17 59.14 61.49 62.8 66.06 

18 59.47 61.87 63.14 66.45 

19 60.62 63.28 64.29 67.87 

Average 59.92 65.80 65.20 73.03 

 

Various PT and QA hiring options were simulated to observe their impact on 
post - release quality of the software. These factors help improve the sad path 
test coverage and discover defects that are usually discoverable by the 
system end user [39].  

Scenario 2 results shows suggests n average of 7.8% improvement in the 
UAT pass rate when PT is adopted compared to when PT is not adopted in 
the project. Scenario 3 results show that "High" QA Ability is seen to have an 
average of 8.4% improvement on the UAT pass rate compared to “low" QA 
Ability. The impact of SP is clearly seen to reduce the UAT pass ratio in some 
scenarios while it remains relatively inactive in others.  

Hypothesis significance tests are carried out on these results to test the 
significance of these findings using the null and alternate hypothesis 
described below: 

Null Hypothesis,   : There is no significant difference in the post release 
quality of software when PT  and a QA with high ability is used compared to 

Investigating the Practical Impact of Agile Akerele et al

29



when  PT and/or QA with high ability are not adopted in an environment prone 
to schedule pressure. 

Alternate Hypothesis,     There is significant difference in the post release 
quality of software when PT and a QA with high ability is used compared to 
when  PT and/or QA with high ability are not adopted in an environment prone 
to schedule pressure. 

It is essential to determine the nature of distribution of the data in each 
scenario to identify the apt significance testing technique to be used. 
Probability plot is drawn for each scenario to determine of the results of the 
scenario are normally distributed. Figures 7, 8, 9 and 10 shows the probability 
plots of scenarios 1,2,3 and 4 respectively. 

  

Figure 7 Probability plot for scenario 1 

 

 

Figure 8 Probability plot for scenario 2 

 

 

Figure 9 Probability plot for scenario 3 

-3 

-2 

-1 

0 

1 

2 

3 

50 55 60 65 

Series1 

Linear 
(Series1) 

-4 

-2 

0 

2 

4 

55 60 65 70 75 

Series1 

Linear 
(Series1) 

-4 

-2 

0 

2 

4 

55 60 65 70 75 

Series1 

Linear 
(Series1) 

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

30



 

 

Figure 10 Probability plot for scenario 4 

 

For a data group of normal distribution, the values of the data in the group 
cluster on or very closely to the trend line; otherwise, the data group cannot 
be attributed as normally distributed. Figures 8,9,10 are normally distributed 
as they fall on the same line. However, figure 7 shows substantial number of 
distant points from the trend line even though a number of the plots fall on the 
line - suggesting the data group isn't normally distributed. To verify that 
scenario 1 data is not normally distributed, we further perform a Shapiro- 
Wilks normality test. Results of the test are detailed in table 11 below. 

 

Table 11 Shapiro- Wilks normality test result for scenario 1 

 Kurtosis Calculat
ed W 

Critical W p value Ho (95% 
significance) 

Scenario 1 -1.288 0.8918 0.901 0.003 Rejected 

 

 As the calculated W (0.89173) is less than the critical W (0.901), we reject the 
null hypothesis at 95% confidence interval. Thus, we confirm data for scenario 
1 is not normally distributed. 

Unpaired t tests are adopted for hypothesis testing of case 2 (low QA Ability) 
and case 3 (no PT). In this case, Scenario 4 is recognised as the "control 
group" while scenarios 1, 2, 3 are used as the "experimental groups" for the 
hypothesis testing. Statistical F test is conducted on cases 2 and 3 to test for 
variance equality to identify the appropriate unpaired t test formula to be used. 
The null hypothesis in both case was could not be rejected at 95% confidence 
interval, concluding there is no significant difference in the variance of each 
data group. Table 12 below summarizes the results of the unpaired t tests 
carried out on the various scenarios. 

 

 

 

-4 

-2 

0 

2 

4 

65 70 75 80 85 

Series1 

Linear 
(Series1) 

Investigating the Practical Impact of Agile Akerele et al

31



Table 12 Hypothesis test results for cases 2 and case 3 

 µ             α P 
value 

Hₒ 

Control 
Group 

Experimental 
Group 

Control 
Group 

Experimental 
Group 

Case 2 

(Scenario 
4 vs. 2) 

 

73.03 

65.80  

5.16 

4.06 P < 

0.0001 

Rejected  

Case 3 

(Scenario 
4 vs. 3) 

65.16 3.46 P<0.0

0001 

Rejected 

 

With both p values for both cases less that 0.0001 at p> 0.05, the null 
hypothesis for both cases are rejected results, confirming that PT and QA 
Ability are highly significant in the post release quality of software in an 
environment prone to schedule pressure.  

The hypothesis test for case 1(low QA Ability and no PT) was tested with the 
Mann-Whitney U test as both data groups are not normally distributed. The 
results are tabularized in table 13 below. 

 

Table 13 Mann-Whitney U test results 

Sum of Ranks          Mean of Ranks µ      Calculated 

U 

Critical 

U ( at 
0.05) 

Hₒ 

Control 
Group 

Experimental 
Group 

Control 
Group 

Experimental 
Group 

551 190 29 10 0 113 Rejected 

 

The results above is highly significant as the critical U far exceeds the 
calculated U, hence, the rejection of the null hypothesis. We can therefore 
confirm that there is significant difference in the post release quality of project 
when PT and QA with high Ability are adopted in an environment prone to 
schedule pressure.  

 

 

 

 

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

32



7-3 LIMITATIONS OF THE STUDY 

 

External Validity 

Similar to all experiments executed using SD, the model results validity are 
based on the calibration and parameterization of the model variables. When 
data for some variable are scarce and not available in literature, some of the 
parameters used in the variables are based on expert judgment and 
discretionary assumption, which may be prone to being biased. Moreover, 
variable parameters -particularly those related to the cost of implementing 
rework across the stages in the delivery pipeline-  may be subject to debate 
across various environments and ethics where the QA resources are 
somewhat allocated differently. However, in such cases when the values of 
variables are subjective, effort is made to validate this value by conducting 
surveys to estimate the values the values generally agreeable by experts in 
the field. One of the mean, median and mode of these surveys were used to 
adopt the most realistic values in the industry so as to reduce the impact of 
using exaggerated or deprecated values.  

Most importantly, the effectiveness of the various factors are valid under the 
conditions experienced by the project team, most notable the schedule 
pressure experienced. Intuitively, without the effects of schedule pressure 
process improvement practices, the adoption of these factors will yield better 
results.  

Internal Validity 

Internal validity concerns were mitigated by testing the normality of the data 
groups, testing for equality in variance of data groups using f test, and 
ensuring the right hypothesis testing technique is used.  

The number of the actual test cases per iteration produced by the team is 
relatively small. This being  middle sized project, it may imply that this model 
is not applicable to middle-large sized projects with numerous test cases 
developed due to high number of features. The only way to resolve this will be 
to validate the model using data from large projects practicing continuous 
delivery and using agile methods that evolve over a very long period of time 
which consist of high number of automate acceptance test cases and user 
acceptance test cases. In reality, such projects are hard to come by to 
effectively validate our work. 

 

8- CONCLUSION AND FURTHER WORK 
 

This study investigates the active factors in CD, the dynamics of these factors 
and focally investigates the impact of identified agile factors: PP, PT, 
customer involvement, TDD and QA Ability on the pre-release and post-
release quality of software projects in an environment susceptible to schedule 
pressure using system dynamics. A system dynamics model was developed 

Investigating the Practical Impact of Agile Akerele et al

33



and validated against the quality metrics of a completed software project. The 
validated model was then explored to investigate the formulated hypotheses 
in this work.  

The study shows that factors such as level of experience of developers, 
domain experience and cognitive ability of the QA, knowledgebility of the 
customer, among other factors have an impact on the quality of software and 
could cause variations in the performance of CD.  

The model simulation results show that schedule pressure has a major impact 
on the level of adoption of key agile practices and consequently on the quality 
of software. Statistical analysis of the results shows that PP doesn't have a 
significant impact on the pre-release quality of software while TDD and 
customer involvement both have significant statistical impact on the pre-
release quality of software. Results also showed that both PT and QA ability 
have significant impacts on the post-release quality of the software.  

The developed SD model provides project managers with a tool to observe 
and anticipate the cause and effects of their actions within CD, enabling them 
have better controllability of the CD process. This facilitates achieving a 
repetitive, predictable and risk-free CD activity for software projects. 
Furthermore, the model will help management make realistic decisions based 
on the quality of impact of the agile practice invested. 

There is ongoing effort to source another project validation data from a 
completed CD project that meets the validation requirements for the project. 
This is to re-validate the model and test its robustness and suitability for 
application in varying environmental configuration settings. Accomplishing this 
will further boost the generalization of the findings of this paper. 

In addition, further work is to be conducted to investigate the  trade-offs 
between the cost and improved quality achieved by adoption of these agile 
practices, the optimal level of adoption  of these practices as well as the 
economic effectiveness of the adoption of the agile practices in the CD 
process. Ongoing study is being carried out by the authors to investigate 
these concerns and enlighten management on the financial efficacy of the 
adoption of these practices. 

 

REFERENCES 
 

[1] K. Beck et al, “Manifesto for Agile Software Development. Agile Alliance", 
http://agilemanifesto.org/  (Retrieved 14 Jan 2012). 

[2] J. Humble and D.Farley, “Continuous Delivery: Reliable Software 
Releases Through Build, Test, and Deployment Automation", Addison 
Wesley, 2010. 

[3] W. A. Wood and W. L. Kleb, “Exploring XP for scientific research,” IEEE 
Software, vol. 20, no. 3, pp. 30–36, May 2003. 

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

34

http://agilemanifesto.org/


[4] T.Fitz, "Continuous Deployment at IMVU: Doing the impossible fifty times 
a day", http://timothyfitz.com/2009/02/10/continuous-deployment-at-imvu-
doing-the-impossible-fifty-times-a-day/ (Published on 2

nd
 October, 2009, 

Date accessed 2
nd

 Jan, 2013.) 

[5]  T. Abdel-Hamid and S.Madnick, “Software Project Dynamics: An 
Integrated Approach", Prentice Hall, 1991. 

[6] R.J. Madachy, "Software Process Dynamics", Wiley-IEEE Press, 2008. 

[7] F.P. Brooks, "The Mythical Man Month and Other Essays on Software 
Engineering", Addison Wesley, 1995. 

[8] K. Ogata, "System Dynamics", Prentice Hall, 2003. 

[9] Ventana Systems Inc, http://vensim.com/ ,2012 

[10] G.Gruver, M.Young and P.Fulghum, "A Practical Approach to Large-Scale 
Agile Development: How HP Transformed LaserJet FutureSmart 
Firmware", Addison Wesley, 2012. 

[11] R.Borg and M.Kropp, "Automated Acceptance Test refactoring," 
Proceedings of the 4th Workshop on Refactoring Tools, ACM (2011), pp. 
15–21, 2011. 

[12] C. Poole and J. W. Huisman, “Using extreme programming in a 
maintenance environment,” IEEE Software, vol. 18, no. 6, pp. 42–50, 
Nov. 2001. 

[13] F. Maurer and S. Martel, “Extreme programming. Rapid development for 
Web-based applications,” IEEE Internet Computing, vol. 6, no. 1, pp. 86–
90, Jan. 2002. 

[14] D. P. P Hodgetts, “Extreme adoption experiences of a B2B start-up” 

[15] Madachy, R.J. System dynamics modeling of an inspection-based 
process. , Proceedings of the 18th International Conference on Software 
Engineering, pp. 376 –386, 1996. 

[16] M.Melis, I.Turnu, A.Cau and g.Concas, "Evaluating the impact of test-first 
programming and pair programming through software process 
simulation. Software Process: Improvement and Practice 11, pp. 345–
360, 2006. 

[17] J.Humble, C. Read, and D.North, "The deployment production line," Agile 
Conference, 2006. 

[18] M.W. Mantle and R.Lichty," Managing the Unmanageable: Rules, Tools, 
and Insights for Managing Software People and Teams", Addison-
Wesley Professional, 2012. 

[19] L. Klosterboer, "Implementing ITIL Change and Release Management", 
1st ed. IBM Press, 2008. 

Investigating the Practical Impact of Agile Akerele et al

35

http://timothyfitz.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
http://timothyfitz.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
http://vensim.com/


[20] G. P. Richardson and A. L. P. III, "Introduction to System Dynamics 
Modeling", Pegasus Communications, 1981. 

[21] L.Cao, B.Ramesh, and T.Abdel-Hamid," Modeling dynamics in agile 
software development". ACM Trans. Manage. Inf. Syst. 1, 1, pp. 5:1–
5:26, 2010. 

[22] M. C. Paulk, "The capability maturity model: guidelines for improving the 
software process", Addison-Wesley Pub. Co., 1995. 

[23] J. Drobka, D. Noftz, and R. Raghu, “Piloting XP on four mission-critical 
projects,” IEEE Software, vol. 21, no. 6, pp. 70–75, Nov. 2004. 

[24] S. Kuppuswami, K. Vivekanandan, P. Ramaswamy, and P. Rodrigues, 
“The Effects of Individual XP Practices on Software Development Effort,” 
SIGSOFT Softw. Eng. Notes, vol. 28, no. 6, pp. 6–6, Nov. 2003. 

[25] S. Kuppuswami, K. Vivekanandan, and P. Rodrigues, “A System 
Dynamics Simulation Model to Find the Effects of XP on Cost of Change 
Curve,” in Proceedings of the 4th International Conference on Extreme 
Programming and Agile Processes in Software Engineering, Berlin, 
Heidelberg, 2003, pp. 54–62. 

[26] K. Beck, Extreme programming eXplained: embrace change. Reading, 
MA: Addison-Wesley, 2000. 

[27] O. Akerele, M. Ramachandran, and M. Dixon, “Testing in the Cloud: 
Strategies, Risks and Benefits,” in Software Engineering Frameworks for 
the Cloud Computing Paradigm, Z. Mahmood and S. Saeed, Eds. 
Springer London, 2013, pp. 165–185. 

[28] A. J. Albrecht,”Measuring application development 
productivity", Guide/Share Application Develop. Symp. Proc.,  pp.83 -92 
1979 

[29] L. M. Laird and M. C. Brennan, Software Measurement and Estimation: A 
Practical Approach. Hoboken, N.J: Wiley-Blackwell, 2006. 

[30] G. E. Stark, P. Oman, A. Skillicorn, and A. Ameele, “An examination of 
the effects of requirements changes on software maintenance releases,” 
J. Softw. Maint: Res. Pract., vol. 11, no. 5, pp. 293–309, Sep. 1999. 

[31] N. Nurmuliani, D. Zowghi, and S. Powell, “Analysis of requirements 
volatility during software development life cycle,” in Software Engineering 
Conference, 2004. Proceedings. 2004 Australian, pp. 28–37, 2004. 

[32] C. Jones, Programming Productivity, 1ST edition. New York: Mcgraw-Hill 
College, 1986. 

[33] W. S. Humphrey, A Discipline for Software Engineering, 1st ed. Boston, 
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1995. 

[34] G. Melnik and F.Maurer (2007), agile 2007 K. Beck, Test-driven 
development: by example. Boston: Addison-Wesley, 2003. 

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

36



[35] H. D. Mills, Software Productivity. New York, N.Y: Dorset House, 1988. 

[36] M. Cohn, User Stories Applied: For Agile Software Development, 1 
edition. Boston: Addison-Wesley Professional, 2004. 

[37] E. L. Lehmann and J. P. Romano, Testing statistical hypotheses. New 
York: Springer, 2005. 

[38] R. G. Lomax and D. L. Hahs-Vaughn, An introduction to statistical 
concepts. New York: Routledge, 2012. 

[39] J. Russell and R. Cohn, Pair Testing. Book on Demand, 2012. 

[40] Akerele, O., Ramachandran, M., & Dixon, M., “Evaluating the Impact of 
Critical Factors in Agile Continuous Delivery Process: A System 
Dynamics Approach,” International Journal, 2014. 

[41] M. Cohn, Agile Estimating and Planning, 1 edition. Upper Saddle River, 
NJ: Prentice Hall, 2005. 

[42] K. S. Rubin, Essential Scrum: A Practical Guide to the Most Popular Agile 
Process, 1 edition. Upper Saddle River, NJ: Addison Wesley, 2012. 

[43] I. Benbasat and I. Vessey, “Programmer and Analyst Time/Cost 
Estimation,” MIS Q., vol. 4, no. 2, pp. 31–43, Jun. 1980. 

[44] Weiss D.M, "Evaluating Software Development by Error Analysis", Journal 
f Systems and Software, Vol.1, pp. 57-70, 1979. 

[45] P. Hart and C. Saunders, “Power and Trust: Critical Factors in the 
Adoption and Use of Electronic Data Interchange,” Organization Science, 
vol. 8, no. 1, pp. 23–42, Feb. 1997. 

[46] D. B. Egolf, Forming Storming Norming Performing: Successful 
Communications in Groups and Teams. San Jose: Writers Club Press, 
2001. 

[47] K. Siau and Z. Shen, “Building Customer Trust in Mobile Commerce,” 
Commun. ACM, vol. 46, no. 4, pp. 91–94, Apr. 2003. 

[48] N. Nurmuliani, D. Zowghi, and S. Powell, “Analysis of requirements 
volatility during software development life cycle,” in Software Engineering 
Conference, 2004. Proceedings. 2004 Australian, pp. 28–37, 2004. 

[49] B. A. Uzundag, “Confirmation Bias in Software Development and Testing: 
An Analysis of the Effects of Company Size, Experience and Reasoning 
Skills.” [Online]. Available: 
http://www.academia.edu/301912/Confirmation_Bias_in_Software_Devel
opment_and_Testing_An_Analysis_of_the_Effects_of_Company_Size_E
xperience_and_Reasoning_Skills. [Accessed: 22-Jun-2014]. 

[50] A. D. Da Cunha and D. Greathead, “Does Personality Matter?: An 
Analysis of Code-review Ability,” Comm. ACM, vol. 50, no. 5, pp. 109–
112, May 2007. 

Investigating the Practical Impact of Agile Akerele et al

37



[51] L. Shoaib, A. Nadeem, and A. Akbar, “An empirical evaluation of the 
influence of human personality on exploratory software testing,” in 
Multitopic Conference, 2009. INMIC 2009. IEEE 13th International, pp. 
1–6, 2009. 

[52] J. Zander-Nowicka and F. FOKUS, Model-based Testing of Real-Time 
Embedded Systems in the Automotive Domain. Stuttgart: Fraunhofer IRB 
Verlag, 2009. 

[53] L. J. White and E. I. Cohen, “A Domain Strategy for Computer Program 
Testing,” IEEE Transactions on Software Engineering, vol. SE-6, no. 3, 
pp. 247–257, May 1980. 

[54] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing, 3 
edition. Hoboken, N.J: Wiley, 2011. 

[55] J. Itkonen, M. V. Mantyla, and C. Lassenius, “The Role of the Tester’s 
Knowledge in Exploratory Software Testing,” IEEE Transactions on 
Software Engineering, vol. 39, no. 5, pp. 707–724, May 2013. 

[56] V. Kettunen, J. Kasurinen, O. Taipale, and K. Smolander, “A Study on 
Agility and Testing Processes in Software Organizations,” in Proceedings 
of the 19th International Symposium on Software Testing and Analysis, 
New York, NY, USA, 2010, pp. 231–240. 

[57] M. J. Ree and J. A. Earles, “Intelligence Is the Best Predictor of Job 
Performance,” Current Directions in Psychological Science, vol. 1, no. 3, 
pp. 86–89, Jun. 1992. 

[58] M. W. Matlin, Cognition, 8th Edition. Wiley Global Education, 2012. 

[59] R. R. Armin Beer, “The Role of Experience in Software Testing Practice,” 
pp. 258–265, 2008. 

[60] O. Akerele, M. Ramachandran, and M. Dixon, “System Dynamics 
Modeling of Agile Continuous Delivery Process,” pp. 60–63, 2013. 

 

 

 

 

 

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

38




