

Analyzing the Change Profiles of Software
Systems using their Change Logs

Munish Saini
(1),

 Kuljit Kaur
 (2)

(1) Department of Computer Science and Engineering.Guru Nanak Dev University
(India)

E-mail: munish_1_saini@yahoo.co.in

(2) Department of Computer Science and Engineering.Guru Nanak Dev University
(India)

E-mail: kuljitchahal@yahoo.com

ABSTRACT

This paper analyzes the change history of various software systems for
understanding their evolutionary behavior with respect to the type of changes
performed over a period of time. The main objectives of this research work
are: (a) What types of changes are most likely to occur in a software system
during its evolution? (b) Is there any pattern in the type of changes performed
over time in a system? An automated keyword based categorization
technique is applied to the textual description of commit records of the
software systems to categorize change activities into various types such as:
Adaptive, Corrective, Perfective, Enhancement, and Preventive. The study
finds that corrective changes are the maximum and preventive changes are
the least in the software systems analyzed here.

Keywords: GIT, Software Maintenance, Software Evolution, Open Source
Software.

1- INTRODUCTION

Software evolution refers to the phenomenon of software change and growth.
The environment in which software has to work changes over time and the
software itself must adapt to this changing environment. Lehman’s first law [1]
of software evolution stipulates that useful real-world software systems (i.e.,
E-type) must undergo change in response to various types of requirements
such as corrective, adaptive, perfective, and preventive[2-4]. Kemerer and
Slaughter [5] point out that there are several patterns that characterize the
maintenance (evolution [6]) of a software system. A relatively high volume of
corrective changes takes place immediately after the system becomes opera-
tional. It stabilizes as the system matures, but increases when the system ag-
es (due to system entropy). However, functionality enhancement related
changes are done on a fairly regular basis. We could not find out any research
work which supports/refuse these claims. So it becomes a topic of study in
this research paper.

Previous works [7], [8] on change types and frequency of their occurrence are
based on surveys. An empirical study [9], reported in 2003, finds significant

Analyzing the Change Profiles of Software Saini and Kaur

39

differences in the distributions of various change types as against the results
reported by the survey based studies. Among the reasons cited for the differ-
ence in results include ‘change in the nature of software development’. It may
be interesting to observe the results after a gap of another ten years given the
emergence of new development approaches, such as incremental and itera-
tive development [10]. Moreover, these papers do not consider patterns of
change in the change types during the software evolution as talked about in
[5] and being studied in this research work. The study analyses the data col-
lected from open source software systems as it may clarify the doubts regard-
ing lack of systematic maintenance in case of such systems [11].

This research aims to study the following:

1) What types of changes are most likely to occur in a software system during
its evolution?
2) Is there any pattern in the type of changes performed over time in a sys-
tem?

Section 2 of this paper discusses the related work. Section 3 specifies the
data collection procedure. The change categorization approach is specified in
Section 4. Section 5 presents the used methodology along with validation of
the automated change categorization approach. The experimental results and
its statistical analysis are presented in Section 6. The discussion of the ob-
tained results is specified in Section 7. Section 8 concludes the paper and last
section gives the future directions for the work.

2- LITERARTURE REVIEW

Lientz, Swanson, and Tompkins [7] carried out a survey on the relative effort
put in adaptive, corrective, and perfective types of maintenance. The study
stated that 17.4% of maintenance effort was categorized as corrective in na-
ture; 18.2% as adaptive; 60.3% as perfective; and 4.1% was categorized as
‘other’. Nosek and Palvia [8] repeated the same experiment and obtained sim-
ilar results. However, Schach et al. [9] conducted an empirical study in 2003
and found a significant difference in the results from the previous survey
based studies.

Lee and Jefferson [12] found the distribution of maintenance effort of a web
based Java application similar to the one reported by Basili et al. [13] for soft-
ware, developed using a different programming paradigm (FORTRAN and
Ada). Sousa et al. [14] studied 37 large organizations situated in Portugal us-
ing a survey based approach. They concluded that, on average, organizations
spend 48.6% of the maintenance effort on adaptive maintenance; 36.2% on
corrective; only 1.7% on preventive; and 13.5% on perfective maintenance.
Yip and Lam [15] conducted a survey of the state of software maintenance in
Hong Kong. The results of the study indicate that enhancement related work
is the largest among all the maintenance categories (39.7%) followed by cor-
rective (15.7%).

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

40

Unlike the studies which model software maintenance by taking a snapshot of
software at one point of time, next paragraphs mention the work which inves-
tigates the changes in maintenance types covering software life time or a por-
tion of a life time.

Abran and Nguyenkim [16] did a trend analysis of maintenance workload dis-
tribution for a time period of two years in a Canadian financial institute. The
trend analysis showed cyclic fluctuations in almost all types of changes with
perfective changes decreasing sharply towards the later phases of the time
period.

Gefen and Schneberger [17] examined a state-of the art Information System
for 29 months. They could identify three distinct periods. An initial phase
shows an upsurge in corrective modifications (stabilizing phase), followed by
the addition of new functions to the existing applications (improvement
phase), and then by the addition of new applications (expansion phase).

Another study investigates the changes of maintenance requests during the
lifetime of a large software application examined over a 67 month period [18].
They identify four distinct stages. User support types of maintenance requests
dominate the first stage, corrective changes dominate the second stage, and
enhancement type of changes dominates the third stage. In the last stage, all
these types of change requests diminish and the organization starts looking
for a replacement of the software.

A few studies have been conducted which attempt to construct descriptive
and predictive models for maintenance releases. Goulao et al. [19] used the
time series forecasting model to predict software maintenance and evolution
request in an open source software. They used an ARIMA Model [20] for pre-
diction of software evolution trends and seasonal patterns. Kemerer and
Slaughter [5] proposed an empirical approach to study software evolution. In
this paper a longitudinal research is performed by using sequence analysis.
This study allows understanding of how software maintenance activities and
costs change over time and gives information about current maintenance and
development practices. Kemerer and Slaughter [21] discussed the software
evolution drivers and dynamics. They conducted the research in three phases.
In the first phase, various patterns of software evolution is investigated and
assessed whether they are consistent with the laws of software evolution [22].
In the second phase, various drivers of software maintenance are identified
and in the last phase the modeling and prediction of software objectives are
presented.

In the context of this work, software change classification may also be of in-
terest to the readers. Swanson [23] gave the first and the most commonly
used classification. Mockus and Votta [2] suggested an automated method of
classifying software changes based on their textual descriptions. In this paper
they provided a classification of changes, on the basis of specified keywords
in the textual abstracts of changes, into three primary categories (adaptive,

Analyzing the Change Profiles of Software Saini and Kaur

41

corrective, and enhanced) and introduced another category (inspection
maintenance). Hassan [24] extended the work of Mockus and Votta [2] to
classify change messages. They presented an automated classification of
change messages in open source software projects, and classified the change
messages into mainly three types as a bug fix, a feature introduction, or a
general maintenance change. Kim et.al [25] used a machine learning classifier
to determine the type of change and classify it as either buggy or clean
change. Lehnert et al. [26] discussed the change classifications, but they re-
strict to fine grained changes only. Chapin et.al [27] discussed about the types
of software evolution and software maintenance. They discuss the classifica-
tion of software maintenance activities for practitioners, managers, and re-
searchers. They used a clustering method to combine the various activities
into clusters.

The study given in [2] is of our interest. Various issues which are not dis-
cussed or presented in the paper are considered as the base of our research
work. The issues which we found are as follows:- Change Classification types
are limited, Number of keywords specified are less, some common keywords
are not included and they don’t specify the strong reason for their elimination,
frequency count of various change categories and their subcategories is not
shown.

Most of these studies do not consider the frequency of different of types of
changes; rather they measure effort spent in making changes corresponding
to the different change types. It has been observed that corrective changes
demand less than half of the effort of non-corrective changes (When change
set size is controlled) [28]. So effort distribution cannot be used as an indicator
for change distribution. This study is first of its kind as we could not find any
research work which does a trend analysis of change distribution in open
source software. In this research work the change history data of open source
software projects are first classified into particular change categories and then
analyzed both graphically and statistically to find the existing common pattern
in the change activities.

3- DATA COLLECTION

We selected six open source software projects for performing the analysis.
These projects are selected on the basis that all of them have high number of
commits, authors and have active development, In this data set, PostgreSQL
and GnuCash (16-17 years) are the software systems with long history. With
respect to this, Twitter-MySQL and PHP-src can be considered with medium
history (13-14 years), and Apache-Tomcat and Wordpress with comparatively
short history (8-10 years).

The repositories of the open source software projects are obtained from GIT
[29] or GIT Hub [30]. These repositories are downloaded to make clone of the
original repository onto the local machine using GIT Bash. The version wise
change history of projects obtained from these repositories by using log –

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

42

oneline command and stored in .txt files. The repository information along with
the descriptive statistics of the projects is provided in Table 1.

Table 1 Descriptive statistics of the six open source software projects

Software

Projects

Origin

Date

Data

Collection

Date

Number

of year

Number

of

Authors

Total Com-

mits Ana-

lyzed

avg, min,

max

Commits

each year

Postgre-

SQL
7/9/1996 5/21/2013 17 37 43644

2567, 963,

3120

WordPress 4/1/2003 5/21/2013 10 46 24249
2424, 669,

4596

Twitter

 MySQL
8/1/2000 5/21/2013 13 1270 71527

5502,

47, 13401

Php-Src 4/7/1999 5/20/2013 14 372 83654
5975,

1887, 8541

Apache

 Tomcat6.0
10/20/2005 4/30/2013 8 19 5216

652,

50, 1023

GnuCash 11/1/1997 5/21/2013 16 34 19762
1235, 222,

3019

The basic objective of collecting this data is that we want to

A) Categorize each commit record into various change categories.

B) Study the change pattern

4- CHANGE CLASSIFICATION APPROACH

4-1 CHANGE CLASSIFICATION CATEGORIES

Majority of the research studies do not agree on a uniform categorization of
change types. We consulted Swanson [23], IEEE [31] [32], and ISO\IEC
14764 [33] for deciding the type of change categories; and identified Adaptive,
Corrective, Perfective, Enhancement, and Preventive as the main change
categories. The Adaptive category consists all of those activities which are
performed due to the changing environment such as adjusting of code, feature
etc. The Corrective change consist all corrective type of activities such as fix-
ing, identification and isolation of the the bugs. Corective changes are the
most common type of changes which are performed at the most in all evolving
software. All the rearrangement, maintenance activities like code beautifica-
tion is classified as the Perfective changes. Preventive type of changes con-
sist all those activities which are performed with respect to the future mainte-

Analyzing the Change Profiles of Software Saini and Kaur

43

nance such as re-implementation, revision, re-installation of certain features.
The main difference between the perfective and preventive changes is in the
scope of the maintenance where perfective is limited with current mainte-
nance where as the preventive is more concerned about the future mainte-
nance activities. The Enhancement category was added so as to detect the
new functionality additions and separate them from changes done to improve
the existing software. The motivation for this is the change in the develop-
ment process followed nowadays (agile software development) from the times
when the change classification was proposed (traditional process models).
Even the concept of software evolution has become more prevalent over the
period of time in comparison to the age old concept of software maintenance.

4-2 SPECIFICATION OF KEYWORDS

The change history of the six open source software projects is manually ana-
lyzed by both the authors individually to find the list of significant keywords
(keywords in accordance with the definition of specified change category).
The keyword which is in accordance with a particular change type definition is
placed in that change categories. For example fixes and its similar terms like
fixed, fixing specifies a corrective action, hence placed in corrective change
category. Similarly keyword like adjust, allocates indicates the adaptive action
is performed. Finally, the individual keywords list of each author is consulted
by both the author together to find any discrepancy in categorization of partic-
ular keywords in a specified change category or any keyword which is missed
by one but identified by another author. This double-manual evaluation ap-
proach eliminates the chances of missing keyword or placing a keyword in
wrong change category. Further, for generalization of the list of keywords we
used the WordNet [34] which allows the grouping of keywords based on the
meaning of the keywords such as keywords like fix, fixed, fixing, fixes are
grouped as one keyword such as fixes. This reduces the number of keywords
in the specified list. At last the concept of tf-idf [35] is also used to eliminat all
those words which are irrelevant in the text. The generalized list of identified
keywords and their specified categories is shown at the end of paper in Ta-
ble11 of Annexure 1. We assumed that this list of keywords is enough and
efficient to analyze the history and trends of the open source software pro-
jects.

4-3 FILTERING OF COMMIT HISTORY

The collected data is very much unstructured. It is found that at many commits
entries in the change log no commit message is written, or committer of the
change had written some unusual text. So the collected version wise commit
history of the all the open source software require filtering process to remove
all those commits entries. In this research work we had used manual and au-
tomated approach for filtering of the commit history. For automated filterining,
a code is written in Java which itself look and eliminates the blank commit
(commit at which no comment is mentioned) and the unusual commit (commit

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

44

message with no meaning, or do not contain listed keyword) from commit his-
tory of all six projects. Further, filtered version wise commit history of all the
open source software projects is evaluated and cross checked manually by
main author of this paper to filter out any remaining blank commit or unusual
commit, which are missed out in automated filterining process. So at the end,
we got filtered version wise commit history which does not have any blank or
unusual commit.

4-4 CRITERIA FOR ASSIGNING CHANGE CATEGORY TO COMMIT
RECORD

The assigning of the change category and counting the particular change cat-
egory frequency is done automatically by the program written in Java. Each
commit record in the commit history is looked to find out its possible change
category. The specified criteria which are followed for assigning the change
category consist of the following:

a) Look for the all specified keywords in a commit record and measures
the frequencies of each keyword.

b) Look for change category in which these keywords lies.
c) The keyword with highest frequency will decide the change category.

For example, if in a commit record keyword adjusted has highest
count, then it means this commit belongs to the Adaptive change cat-
egory.

d) In case, if the two keywords from different change category have the
same occurrence frequency, then the keyword which is occurring first
in the commit record is considered as the decisive.

e) The commit record which does not contain the specified keywords is
skipped.

f) The commit record which does not have any commit message is also
not considered in this classification.

5- METHODOLOGY

The version wise change history of all the open source software projects is
evaluated separately to categorize each commit record (textual description)
into a specified change category. This categorization is performed automati-
cally by the program which is written in Java. The program satisfies and con-
siders all the classification criteria specified before in this paper and gives
output as the count of all the classification categories (Adaptive, Corrective,
Perfective, Enhancement, and Preventive) for a particular version of the open
source software.

5-1 VALIDATION OF AUTOMATED CHANGE CLASSIFICATION AP-
PROACH

Analyzing the Change Profiles of Software Saini and Kaur

45

For validation of the automated classification approach we used the same
approach as used by the Mokus and Votta [2]. We consulted four experts (2
open source software developers, 1 Professor, 1 Ph.D researcher) in the field
of open source software evolution. We asked them to manually classify each
commit record in the change log into a particular change category by using
the same categorization criteria as used for the automated classification.We
used the Cohen’s Kappa (K) to evaluate the agreement between the manual
and the automated change classification. In Table 2,3,4,5, the manual (by dif-
ferent experts) and the automated classification of commits of first version of
GNU Cash v1.3 is shown. The rows and columns of these tables specify the
manual and automated categorization data respectively.

Table 2 Comparison of Expert 1 Classification with Automated Classification of GNU

Cash version v1.3

Automated Classification

Expert 1

Classification
Adaptive Corrective Perfective Enhancement Preventive

Adaptive 70 0 30 0 0

Corrective 20 576 13 161 8

Perfective 0 0 100 0 0

Enhancement 0 0 0 300 0

Preventive 0 0 10 0 6

Table 3 Comparison of Expert 2 Classification with Automated Classification of GNU

Cash version v1.3

 Automated Classification

Expert 2

Classification Adaptive Corrective Perfective Enhancement Preventive

Adaptive 70 0 21 0 0

Corrective 20 576 33 161 0

Perfective 0 0 87 0 0

Enhancement 0 0 12 300 4

Preventive 0 0 0 10

Table 4 Comparison of Expert 3 Classification with Automated Classification of GNU

Cash version v1.3

 Automated Classification

Expert 3

 Classification Adaptive Corrective Perfective Enhancement Preventive

Adaptive 70 0 21 0 0

Corrective 18 573 33 160 1

Perfective 2 2 86 0 4

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

46

 Enhancement 0 1 12 300 3

Preventive 0 0 1 1 6

Table 5 Comparison of Expert 4 Classification with Automated Classification of GNU

Cash version v1.3

 Automated Classification

Expert 4

Classification Adaptive Corrective Perfective Enhancement Preventive

Adaptive 70 0 21 0 0

Corrective 18 573 33 160 1

Perfective 2 2 87 0 0

 Enhancement 0 1 12 301 3

Preventive 0 0 0 0 10

The calculated Kappa coefficient (shown in Table 6) for all the projects, lies
between [0.5-0.8]. It indicates the existence of a moderate agreement be-
tween the automated and manual classification. This high value of the Kappa
coefficient validates the fact that automated classification is valid and effec-
tively categorizes the commits into different change categories.

Table 6 Kappa Coefficient for the six software project’s (first version only)

 Kappa Coefficient

open source software Auto/Expert1 Auto/Expert2 Auto/Expert3 Auto/Expert4

PostgreSQL

(version PG95-1) 0.59 0.6 0.57 0.59

WordPress

 (version 1.5) 0.68 0.71 0.73 0.79

Twitter MySql

(version mysql3.23x) 0.58 0.57 0.56 0.60

Php-Src

(version php4.0) 0.5 0.52 0.58 0.55

Apache Tomcat 6.0

(version 6.0.0) 0.69 0.7 0.68 0.71

GnuCash

(version v1.3) 0.70 0.69 0.72 0.69

Analyzing the Change Profiles of Software Saini and Kaur

47

6- RESULTS AND ANALYSIS

In this section the results obtained by analyzing the commit records of differ-
ent versions of open source software systems are presented. The results are
shown in three steps. In step one, change distributions are analyzed. The data
are presented using pie-charts. In the second step, change pattern study of
different software is presented. The change pattern in the evolution of open
source software has been presented using various tools such as bubble chart,
and line chart. Bubble chart gives a strong visual appeal. Line chart has been
used to simplify the picture as much as possible. In the third section, the
change categorization data is statistically analyzed, to find the variation (fluc-
tuation) and the change trend in the different change categories of the open
source software projects.

6-1 CHANGE DISTRIBUTION ANALYSIS

This section analyses the distribution of different change categories by taking
into consideration the whole change log of the software as a single unit of
analysis. The pie-charts (see Fig. 1) indicate that the change distributions are
different across most of the software systems. Corrective changes have the
maximum share in the total number of changes in all the data sets. Preventive
changes have the minimum share in all the other change logs except for Twit-
ter MySQL and Apache Tomcat. Code restructuring has been taken up more
frequently in these two programs.

Postgre SQL resembles GnuCash in change distribution (see Table 7). They
both have a fare share of perfective and enhancement related changes, and
comparatively lesser number of corrective changes. These distributions are
comparable with that of Mockus and Votta [2], and Schach et al.’s [9] studies
as they both focus on frequency of maintenance types and not on mainte-
nance effort. Interestingly for the first three systems (PostgreSQL, GnuCash,
and Twitter MySQL), changes in adaptive, perfective, and enhancement cate-
gories (when combined) are more than 45% (as in [2]), and corrective chang-
es are close to 34%. But for the other three systems (PHP-src, Tomcat, and
WordPress), changes when combined in the three categories are less than
45% (as in [9]), and corrective changes are close to 50%. Here we consider
the changes of primary types only.

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

48

 (a) (b)

 (c) (d)

 (e) (f)

Figure 1 Pie charts representing the percentage count of each change category in (a)
PostgreSQL (17 yrs) (b) GnuCash (16 yrs) (c) Twitter MySQL (13 yrs) (d) Php-Src (14

yrs) (e) Apache Tomcat (8 yrs) (f) Wordpress (10yrs)

Analyzing the Change Profiles of Software Saini and Kaur

49

Table 7 Change Distribution in Change Logs of various software Systems

Type of

Change

Postgre-

SQL
GnuCash

Twitter

MySQL

Php-

Src

Apache

Tomcat

Word-

Press

Schach
et al.[9]

Mockus
et al.[2]

Corrective 26.70% 31.00% 35.00% 45.40% 41.30% 49.50% 50% 34%

Adaptive 19.60% 17.10% 19.30% 16.00% 12.20% 12.50% 2-4% -

Preventive 8.10% 4.80% 14.80% 3.10% 19.40% 7.30% - 4%

Perfective 22.50% 20.70% 16.80% 13.40% 11.90% 15.40%

36-
39%

45%

(also
includes
adaptive

changes
)

Enhance-

ment
23.00% 26.40% 13.20% 22.10% 16% 15.30%

6-2 CHANGE PATTERN ANALYSIS

PostgreSQL:

Figure 1 (a) makes it clear that the corrective changes have the maximum
percentage and preventive has the least percentage in PostgreSQL. It speci-
fies that most of the change activities in PostgreSQL are corrective in nature
followed by enhancement and perfective changes. The bubble chart in Figure
2(a) specifies the frequency of each change category in different versions.
The size of bubble depicts the frequency count of the change performed. It is
found that at the start of PostgreSQL evolution, change activity is very slow
and corrective changes are the most dominant among all the change types.
After the 4

th
 version, there is rapid increase in the activity of all the change

categories. The corrective changes are surpassed by enhancement and per-
fective changes at some points, while least activity is found in preventive.

The peaks and troughs in the change pattern become more clearly visible in
Figure2 (b). It specifies the trend of changes, and gives the comparison be-
tween frequency counts of different change categories over a period of time.
As per the change pattern, corrective changes are the most prominent in the
beginning followed by enhancement changes in the middle release. Towards
the last releases of this data set, the perfective changes become the most
prominent. The preventive change category has very less activity and remains
at the bottom of the graph throughout. In the change pattern plot, it is found
that there is not much fluctuation in the change activity. It starts from a lean
period, remains high for a number of releases, and seems to be heading to-
wards a lean period again.

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

50

(a)

(b)

Figure 2 (a) Bubble chart, (b) Line Chart representing the frequency count of each

change category in PostgreSQL

GnuCash:

There is a lot of fluctuation in the change activity of this software system (Fig-
ures 3(a) and 3(b)). Sudden change is observed at release 1.4, and 1.7. Oth-
erwise the change is gradual. Except for preventive changes, all types of
changes follow the same pattern. Most of the times, they all increase (may be
in different proportions) at the same time and also decrease at the same time.
Corrective changes are dominant throughout. Preventive changes are the
least in the whole change history.

Analyzing the Change Profiles of Software Saini and Kaur

51

(a).

(b)
Figure 3 (a) Bubble chart, and (b) Line Chart representing the frequency count of each

change category in all the versions of GnuCash

Twitter MySQL:
The change activity starts from a lean period with a major fluctuation after that
(Figures 4(a) and 4(b)). Corrective changes are dominant, but not in all the
releases. It is important to watch the increase in preventive changes, which
has been least in other software systems analyzed in this study. As in
GnuCash, all the changes increase and decrease together.

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

52

(a)

(b)

Figure 4 (a) Bubble chart, (b) Line Chart representing the frequency count of each

change category of Twitter MySQL

WordPress:
The preventive changes are the least performed changes in all the versions
and they remain at the bottom of the graph (Figures 5(a) and 5(b)). However,
none of the other systems show the trend for corrective changes as in this
software system. Corrective changes are the most dominant in all the versions
and it is clearly seen from the given plot. Another trend of similar in-
crease/decrease in all the changes is observed in this case too.

Analyzing the Change Profiles of Software Saini and Kaur

53

(a)

(b)

Figure 5 (a) Bubble chart, (b) Line Chart representing the frequency count of each
change category of WordPress

Php-Src:
Changes, except preventive, are very regular in all the initial seven releases
(Figures 6(a) and 6(b)). Later on, corrective changes shoot up. The corrective
changes have the highest frequency followed by enhancement changes,
where as preventive has the least. The adaptive and perfective change cate-
gory curves overlaps throughout. After php5.1 release there is rapid continu-
ous increase in the growth of each curve which remains for 2-3 versions fol-
lowed by a decline in the curve.

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

54

(a)

(b)

Figure 6 (a) Bubble chart, (b) Line Chart representing the frequency count of each
change category of Php-Src

Apache Tomcat6.0:
In case of Apache Tomcat, the time span between various releases is very
uneven and short. There are many releases which are released with a gap of
one day or even on the same day. Due to that, very few or no change activity
is present at many of the places in the bubble chart (Figures 7(a) and 7(b)).
Initially, all types of changes are significant only to decrease in the next re-
lease. Not much activity is observed after that. Corrective changes gradually
increase towards the middle of the change history study period. Preventive
changes also follow the corrective changes after release 6.0.20. Here adap-
tive changes are very less.

Analyzing the Change Profiles of Software Saini and Kaur

55

(a)

(b)

Figure 7 (a) Bubble chart, (b) Line Chart representing the frequency count of each

change category of Apache Tomcat

6-3 STATISTICAL ANALYSIS

6-3-1 ANALYSIS OF VARIANCE

The variation in the change categorization data of all software is statistically
tested by using the variance. The existence of variance (shown in Table 8)
indicates the variation in the data. It is found that the variance of Corrective
change category in all software is higher than all other change types. Further,
change categorization data is evaluated to find whether the different change
categories have same variance or not (i.e having same or different change
count). Although the Table 8 indicates the values of variance are not same but
this (homogeneity of variance) is cross validated by using the Levene test.

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

56

The obtained p- values for the open source software projects are shown in
Table 9. The calculated p-value of all the software is lower than 0.05. Hence
the null hypothesis that all change categories have homogenous (equal) vari-
ance is rejected for all the software projects.

Table 8 Calculated variance for each change category

Software Adaptive Corrective Enhancement Perfective Preventive

PostgreSQL 57937.257 70266.8187 89149.427 78811.6959 8655.7836

GnuCash 18605.423 52767.3077 40631.192 30508.4103 2076.3077

Twitter MySQL 2351135.8 6915811.667 876609.95 1836115.667 2941111

Php-Src 709253.67 7174111.491 1398825.2 522288.6909 29373.891

Apache Tomcat 701.2802 6606.2425 912.6408 420.6693 1923.8073

WordPress 23097.543 118341.2667 24113.543 30187.4095 5578.0952

Table 9 Levene-test for testing the homogeneity of variance

Software p-value

PostgreSQL 0.0024381

GnuCash 0.000797

Twitter MySQL 0.0157528

Php-Src 0.0143949

Apache Tomcat 0.0001702

WordPress 0.0029837

 6-3-2 TREND ANALYSIS

The test for variance indicates that the change count value of a particular
change category does not remain constant and vary from version to version.
The variation in the data also indicates the existence of possible trend (in-
creasing/decreasing) with which the change activities are performed. The
linear regression analysis is performed on the change categorization data of
different software to find out possible trends. The slope of the regression
equation is the indicator of trend for analysed data. The positive and negative
sign of the coefficient imply the increasing and decreasing trend respective-
ly.Table 10 shows the statistically significant trends (having significant t-
statistics).

Analyzing the Change Profiles of Software Saini and Kaur

57

Table 10 Trend analysis

Regression Equation

Slope (b)/

or trend

Overall Trend

PostgreSQL

Adaptive y = 302.5614 + 21.4860 x 21.486 Increasing

Corrective y = 554.5439 + 15.0982 x 15.0982 Increasing

Enhancement y = 424.4561 + 18.2807 x 18.2807 Increasing

Perfective y = 290.5614 + 30.3281 x 30.3281 Increasing

Preventive y = 116.8772 + 9.6807 x 9.6807 Increasing

GNUCash

Adaptive y = 153.6154 + 7.5385 x 7.5385 Increasing

Corrective y = 468.8846 + -13.6758 x -13.6758 Decreasing

Enhancement y = 385.4615 + -9.7473 x -9.7473 Decreasing

Perfective y = 216.6538 + 4.6099 x 4.6099 Increasing

Preventive y = 37.8846 + 2.8516 x 2.8516 Increasing

Twitter

MySQL

Adaptive y = 258.2857 + 389.2143 x 389.2143 Increasing

Corrective y = 1819.4286 + 386.8929 x 386.8929 Increasing

Enhancement y = 633.0000 + 151.6071 x 151.6071 Increasing

Perfective y = 332.4286 + 311.8929 311.8929 Increasing

Preventive y = -1304.2857 + 674.3214 x 674.3214 Increasing

Php-Src

Adaptive y = 1092.7455 + 5.3000 x 5.3 Increasing

Corrective y = 1674.0727 + 251.8364 x 251.8364 Increasing

Enhancement y = 1646.5455 + -28.6364 x -28.6364 Decreasing

Perfective y = 902.4545 + 6.2727 x 6.2727 Increasing

Preventive y = 266.4545 + -8.0909 x -8.0909 Decreasing

Apache

Tomcat

Adaptive y = 13.8634 + 0.2499 x 0.2499 Increasing

Corrective y = 48.9943 + 0.6656 x 0.6656 Increasing

Enhancement y = 25.9701 + -0.05920 x -0.0592 Decreasing

Perfective y = 14.7269 + 0.1719 x 0.1719 Increasing

Preventive y = -4.3073 + 1.6959 x 1.6959 Increasing

WordPress

Adaptive y = 106.6571 + 16.7179 x 16.7179 Increasing

Corrective y = 1053.0476 + -13.0643 x -13.0643 Decreasing

Enhancement y = 291.4286 + 0.3714 x 0.3714 Increasing

Perfective y = 178.7810 + 14.4607 x 14.4607 Increasing

Preventive y = 163.6762 + -2.9179 x -2.9179 Decreasing

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

58

 It is found that in the six open source software projects, the Adaptive and Per-
fective changes have increasing trend, means in all versions of these software
the Adaptive and Perfective change are performed with increasing trend. For
Corrective, Enhancement, and Preventive changes we found the mixed trend.
The Corrective, Preventive changes have shown decreasing trend for two
software (GnuCash, WordPress), (Php-Src, WordPress) respectively but has
shown increasing trend in all other software. Similarly the Enhancement
changes have shown mixed trend of increasing for three software
(PostgreSQL, Twitter MySQL, WordPress) and decreasing trend other three
software (GnuCash, Apache Tomcat, Php-Src).

7- DISCUSSION

The change distribution, in sixopen source software projects are analyzed by
classifying the commit activities into various change types. The classification
of the commit record (textual description) is done by using the keyword based
classification technique which follows the specified selection criteria. The
whole process of categorization is an automated process accomplished by a
program written in Java. The validation of the automated categorization meth-
od is done by finding the agreement between manual and automated catego-
rization using the Cohen-Kappa test.The high value of the agreement indi-
cates that the automated method is very much effective and efficient in per-
forming the categorization of the commit records into various change catego-
ries.

The change distribution and change pattern analysis results have shown that
the corrective changes are most often performed, where as the preventive
changes have the minimum share in all change logs except for Twitter MySQL
and Apache Tomcat as the Code restructuring has been taken up in these
projects. In almost all the software projects the Enhancement activity is se-
cond among the change activities. Different charts (line, bubble and pie chart)
give a very good indication of the change activity and its trends. It is observed
that change activity in the projects follows the up and down trend. It does not
remain constant. This variation in the data is tested statistically by finding the
variance for each change category and then performing the Levene-test to
find Homogeneity of the variance of different change categories. The output of
the Levene-test has shown that the variance of all change categories is not
Homogeneous. The overall increasing/decreasing trend in the various change
category of all open source software is computed statistically by performing
the regression analysis. The results of the trend analysis have shown that
Adaptive and Perfective changes have increasing trend for all six open source
software, where as the mixed trend (of increasing and decreasing) is found in
other change categories.

Analyzing the Change Profiles of Software Saini and Kaur

59

8- CONCLUSION

In this research work, a keyword based categorization technique is used to
extract the change trends from the unstructured data of software change logs.
The commit history of six open source software projects is obtained and ana-
lyzed for finding the change trends occurring during software evolution. In this
paper, the commit record of six open source software systems is used to find
the changes and their respective types. An analysis of the change distribution
indicates that corrective changes are the maximum and preventive changes
are the least. Though detailed comparison is not possible with the results of
the existing studies (because of differences in the way change categories are
defined), but broadly the change distributions of the systems studied here
match with the data reported by two different studies. As far as the trend in
change pattern is concerned, we find that adaptive and perfective changes
have increasing trend for all six open source software, where as the mixed
trend (of increasing and decreasing) is found in all other change categories. It
is also found that corrective changes are most often performed in all the six
projects, where as the preventive have the minimum share in all change logs.
If change activity increases/decreases, it increases/decreases in all the
change types in most of the cases. Change bursts occur randomly. Another
observation is that change activity is less in the beginning, followed by in-
creasing and decreasing trend.

9- FUTURE WORK

In the future, we plan to investigate the characteristics (other than their
change logs e.g. information from the project web site) of the software sys-
tems so as to understand the different patterns of their change. For example,
it is observed that, preventive changes are very less throughout in some of the
change logs but they follow an upwards trend in other cases. Fine-grained
analysis of changes using keyword frequency is another direction for further
research.

ACKNOWLEDGEMENT

This research work is done under the UGC sanctioned research project enti-
tled “Tracking open source evolution for the characterization of its evolutionary
behavior”. We acknowledge the UGC for giving the grant for doing the re-
search work.

REFERENCES

[1] M. Lehman, “On Understanding Laws, Evolution and Conservation in the
Large Program Life Cycle,” Journal of systems and Software, 1(3), pp.
213-221, 1980.

[2] M. Audris, L.Votta, “Identifying Reasons for Software Changes using His-

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

60

toric Databases,” International Conference on software Maintenance, San
Jose, CA, pp.120-130, 2000.

[3] R. Purushothaman, D.Perry, “Toward Understanding the Rhetoric of Small
Source Code Changes,” IEEE Transactions on Software Engineering,
31(6), pp: 511-526, 2005.

[4] L. Briand, V. Basili, “A Classification Procedure for the Effective Manage-
ment of Changes during the Maintenance Process,” Proceedings of Inter-
national Conference on Software Maintenance, Orlando, FL, USA, pp:
328-336, 1992.

[5] C. F. Kemerer, S. A. Slaughter, “Determinants of Software Maintenance
Profiles: An Empirical Investigation,” Journal of Software Maintenance:
Research and Practice, Vol. 9(2), pp. 235–251, 1997.

[6] K. H Bennett, V.T Rajlich, “Software Maintenance and Evolution: A
Roadmap,” 22nd International Conference on Software Engineering, IEEE
Press, Limerick, pp. 73–78, 2000.

[7] B. P Lientz, E. B. Swanson, and G. E Tompkins, “Characteristics of Appli-
cation Software Maintenance,” Communication of the ACM, 21(6), pp.
466-471, 1978.

[8] J. T Nosek, P. Palvia, “Software Maintenance Management: changes in
the last decade,” Journal of Software Maintenance: Research and Prac-
tice, 2(3), pp. 157-174, 1990.

[9] S. R. Schach, B. Jin, D. R. Wright, G. Z Heller, and J. Offutt, “Determining
the Distribution of Maintenance Categories: Survey versus Measurement,”
Empirical Software Engineering, 8(4), pp: 351-365, 2003.

[10] P. Mohagheghi, R. Conradi, “An empirical study of software change:
origin, acceptance rate, and functionality vs. quality attributes,” Interna-
tional Symposium on Empirical Software Engineering, IEEE Computer
Society Press pp. 7-16, 2004.

[11] I. Stamelos, L. Angelis, A. Oikonomou, and G. L Bleris, “Code quality anal-
ysis in open source software development,” Information Systems Journal,
12(1), pp. 43-60, 2002.

[12] M. G. Lee, T. L Jefferson, “An empirical study of software maintenance of
a web-based java application,” 21st IEEE International Conference on
Software Maintenance, IEEE Computer Society Press, pp. 571-576, 2005.

[13] V. Basili et.al, “Understanding and Predicting the Process of Software
Maintenance Releases,” 18th International Conference Software Engi-

Analyzing the Change Profiles of Software Saini and Kaur

61

http://www.informatik.uni-trier.de/~ley/db/journals/tse/tse31.html#PurushothamanP05
http://www.informatik.uni-trier.de/~ley/db/journals/tse/tse31.html#PurushothamanP05

neering, IEEE CS Press, Berlin, pp. 464–474. 1996.

[14] M. Sousa et al., “A Survey on the Software Maintenance Process,” Inter-
national Conference on Software Maintenance, IEEE CS Press, Bethes-
da, MD, pp. 265–274, 1998.

[15] S. Yip, and T. Lam, “A software maintenance survey,” 1st Asia-Pacific
Software Engineering Conference, Tokoyo, pp. 70–79, 1994.

[16] A. Abran, H. Nguyenkim, “Analysis of maintenance work categories
through measurement,” International Conference on Software Mainte-
nance, Sorrento, pp. 104-113, 1991.

[17] D. Gefen, S. L. Schneberger, “The Non- Homogeneous Maintenance
Periods: A Case Study of Software Modifications”, IEEE Conference on
Software Maintenance, Monterey CA, 1996.

[18] E. Burch, H. J. Kungs, “Modeling software maintenance requests: a case
study,” International Conference on Software Maintenance, IEEE Com-
puter Society Press, Bari, Italy, pp. 40-47, 1997.

[19] M. Goulao, N. Fonte, M. Wermelinger, and F. B. Abreu, “Software Evolu-
tion Prediction Using Seasonal Time Analysis: A Comparative Study,” 16th
European Conference on Software Maintenance and Reengineering
(CSMR), Szeged, pp 213-222, 2012.

[20] S. Anderson, A. Auquier, W. Hauck, D. Oakes, W. Vandaele, and H. Weis-
berg, “Statistical methods for comparative studies: techniques for bias re-
duction”, John Wiley and Sons, 1980.

[21] C. F Kemerer, S. Slaughter, “An Empirical Approach to Studying Software
Evolution,” IEEE Transaction on Software Engineering, 25(4), pp 493-509,
1999.

[22] L. Belady, M. Lehman, “A Model of Large Program Development,” IBM
systems Journal 15 (1), pp: 225-252, 1976.

[23] E. B. Swanson, “The dimensions of maintenance,” 2nd International Con-
ference on Software Engineering, IEEE Computer Society Press, pp.
492–497, 1976.

[24] A. Hassan, “Automated Classification of Change Messages in Open
Source Projects,” ACM Symposium on Applied Computing, pp 837-841,
2008.

[25] S. Kim et.al. “Classifying software Changes: Clean or Buggy,” IEEE
Transactions on Software Engineering, 34(2), pp 181-196, 2008.

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

62

[26] S. Lehnert, M. Riebisch, “A taxonomy of change types and its application
in software evolution,” 19th International Conference and Workshops on
Engineering of Computer Based Systems (ECBS), IEEE Computer Socie-
ty Press, Novi Sad, Serbia ,pp. 98-107, 2012.

[27] N. Chapin, E. Joanne, K. Khan, J.F Ramil, and W. Tan, “Types of Software
Evolution and Software Maintenance,” Journal of Software Maintenance
and Evolution: Research and Practice, John Wiley & Sons, Ltd, Volume
13, pp 3-30; 2001.

[28] H.C Benestad, B. Anda, and E. Arisholm, “Understanding cost drivers of
software evolution: a quantitative and qualitative investigation of change
effort in two evolving software systems,” Empirical Software Engineering,
15(2), pp. 166-203, 2010.

[29] http://git-scm.com/ (Last accessed on 5/21/2013)

[30] https://github.com (Last accessed on 5/21/2013)

[31] IEEE.IEEE Standard Glossary of Software Engineering Terminology. Insti-
tute of Electrical and Electronics Engineers: New York NY, pp. 83, 1990.

[32] IEEE.IEEE Standard for Software Maintenance (IEEE Std 1219–1998).
Institute for Electrical and Electronic Engineers: New York NY, pp. 47,
1998.

[33] ISO/IEC. Software Engineering—Software Maintenance, ISO/IEC FDIS
14764:1999(E). International Standards Organization: Geneva, Switzer-
land, pp: 38, 1999.

[34] http://wordnet.princeton.edu/wordnet/ (Last accessed on 7/10/2013)

[35] http://en.wikipedia.org/wiki/Tf%E2%80%93idf (Last accessed on
12/26/2013)

Analyzing the Change Profiles of Software Saini and Kaur

63

http://git-scm.com/
https://github.com/
http://wordnet.princeton.edu/wordnet/
http://en.wikipedia.org/wiki/Tf%E2%80%93idf

ANNEXURE-1

Table 11 List of specified keywords for different change categories

Corrective

BAND_AID ,BUG_FIX, BUG_FIXES, BUG_FIXED, BUGFIX ,BUGFIXES ,BUGFIXED

,BUG_FIXING,BUGFIXING,BUMP,CHECKING,CHECKS,CLEANUP_COMMENT

,CLEANUP_COMMENTS ,COMMENT_CLEANUP,CLEAN ,CLEAN_UP

,CLEANED_OUT ,CLEANING ,CLEANOUT ,CLEANS ,CLEANUP ,CLEANUPS

,CLEARED ,CLEARING ,CLEARS ,CORRECT ,CORRECTED ,CORRECTING

,CORRECTS,DETECT ,FIX ,FIXED ,FIXES ,FIXES_A_COUPLE_OF_MINOR_BUGS

,FIXING ,FIXUPS ,FLUSH ,PATCH ,PATCHED ,PATCHES ,PATCHING

Adaptive

ABORTED ,ABORTS ,ACCEPT ,ADJUST ,ADJUSTED ,ADJUSTING ,ADJUSTMENT

,ADJUSTMENTS ,ALLOCATE ,ALLOCATING,ALLOCATED,ALLOCATES

,ALLOW,ALLOWS ,ALLOWED ,ALLOWING ,ALTER ,ALTERED ,ALTERS,ALTERING

,ALTERATION,BIND ,BLOCK ,BLOCKING,BLOCKS,BLOCKED,COMMIT

,COMMITING ,COMMITS ,COMMITTING ,COMMITTED,COMPARED

,COMPARES,COMPARING ,COMPATABILITY ,COMPATIBILITY ,COMPATIBILTY

,COMPATIBLE ,COMPATIBLITY ,COMPRESS ,COMPRESSED ,COMPRESSION

,CONVERSION ,CONVERSIONS ,CONVERT ,CONVERTS ,CONVERTED

,CONVERTING ,CHANGE ,CHNAGES,CHANGED ,CHANGING ,DEACTIVATED

,DEATIVATES,DEATIVATE,DEACTIVATING ,DEACTIVATION ,DEALLOCATE

,DEALLOCATES ,DEALLOCATED ,DEALLOCATION ,DECOMPRESS

,DECOMPRESSED ,DECOMPRESSING ,DECOMPRESSION ,DECONSTRUCT

,DECOUPLE ,DECRYPT ,DEFINES ,DEFINING ,DEFINED ,DEGRADE ,DEGRADES

,DEGRADING ,DEGRADED,DEIMPLEMENTED ,DISABLE ,DISABLED ,DISABLING

,DISALLOW ,DISALLOWED ,DISALLOWING ,DISALLOWS ,DISCARD

,DISCARDED ,DISCARDING ,DISCARDS ,DISCONNECT ,DOWNGRADE ,DROPS

,DROPPED ,DROPPING ,DUMPED ,ELIMINATE ,ELIMINATED ,ELIMINATES

,ELIMINATING ,ELIMINATION ,ENABLE ,ENABLED ,ENABLES ,ENABLING

,EXCLUDE ,EXCLUDED ,EXCLUDES ,EXCLUSION ,FREED ,FREES ,FREEZE

,FREEZES,FREEZED ,FREEZING ,GET_RID ,IGNORE ,IGNORED ,IGNORES

,IGNORING ,IMPLEMENT ,IMPLEMENTATION ,IMPLEMENTATIONS

,IMPLEMENTED ,IMPLEMENTS ,INITIALIZATION ,INITIALIZE ,INITIALIZED

,INSTALLED,INSTALLING,MAINTAINING ,RELOAD ,RELOADED ,RELOADING

,RELOADS ,RELOCATABLE ,RELOCATE ,RELOCATED ,REVERSE ,REVERSED

,REVERT ,REVERTED ,REVERTING ,REVERTS ,RESCAN ,RESCANNING

,RESCANS,RESCVANNED,RESETS,RESET ,RESETTING ,RESOLVE ,RESOLVED

,RESOLVES ,RESOLVING ,RESTARTING ,RESTORED ,RESTORES ,RESTORING

,RESTRICT ,SET ,SILENCE ,STOPPING ,STOPS ,STOPPED ,SUPPRESS

,SUPPRESSED ,SUPRESS ,SUPRESSING ,SYNC ,SYNCHRONIZE ,SYNCRONIZE

,SYNCRONIZE D,SYNCHRONIZED,TERMINATE ,TERMINATED ,TERMINATING

,TERMINATION ,TOLERATE ,TOLERATED,TOLERATING,TOLERATES ,TRIM

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

64

,TRUNCATE ,TRUNCATED ,TRUNCATING ,UNIFY ,WRAPPED

Perfective

ARRANGE ,AGGREGATE ,AGGREGATES ,BACK_OUT

,BEAUTIFICATION,CODE_BEAUTIFICATION,CREATE ,CREATES,CREATED

,CREATING ,DELETE ,DELETED ,DELETING ,DELETIONS ,DESTROY

,DECREASE ,DECREASED ,DECREASES ,DECREASING ,DECREMENT

,DECREMENTED ,DECREMENTING ,DECREMENTS ,ENCRYPTED ,ENFORCE

,ENFORCED ,EXTEND ,EXTENDED ,EXTENDING ,EXTENSION ,EXTRACTED

,EXTRACTING ,GENERATE ,GENERATED ,GENERATES ,GENERATING

,GROUPED ,INSERT ,INSERTED ,INSERTING ,INSERTION ,INSERTS

,INTEGRATE ,INTEGRATED ,INTRODUCED ,INTRODUCES ,INVENT ,INVOKE

,INVOKES,INVOKING ,MODIFICATION ,MODIFICATIONS ,MODIFIED ,MODIFY

,MODIFYIED ,MODIFYING ,Move, OPTIMIZATION ,OPTIMIZATIONS ,OPTIMIZE

,OPTIMIZED ,OPTIMIZING ,ORDERING ,ORGANIZE ,PREVENT ,PREVENTING

,PULLING ,QUIET ,RE_INCLUDE ,READJUST ,READJUSTMENT ,REALLOCATED

,REALLOCATION ,REANALYSIS ,REARRANGE ,REARRANGED

,REARRANGEMENT ,REARRANGEMENTS ,REARRANGES ,REARRANGING

,REASSIGN ,REASSIGNED ,REASSIGNING ,RECHECK ,RECONNECT

,RECOVER ,REDEFINE ,REDEFINED ,REDESIGN ,REDO ,REDUCE ,REDUCES

,REDUCING ,REFACTOR ,REFACTORED ,REFACTORING ,REFINE ,REFORMAT

,REJECT ,REJECTING ,REJECTS,REMOVAL ,REMOVE ,REMOVED ,REMOVES

,REMOVING ,RENAME ,RENAMED ,RENAMING ,REORDER ,REORDERING

,REORGANIZE ,REPAIR ,REPAIRED ,REPAIRS ,REPARING ,REPLACE

,REPLACED ,REPLACEMENT ,REPLACES ,REPLACING ,REPRODUCE

,RESTRUCTURE ,RESTRUCTURING ,RESTRUCTURED ,RETRIEVE

,RETRIEVES,RETERIEVED ,RETRIEVING ,REMAKE ,REVOKE ,REWORK

,REWORKED ,REWORKS ,REWRITE ,REWRITER ,REWRITES ,REWRITING

,REWRITTEN ,ROLLBACK ,SIMPLIFICATION ,SIMPLIFICATIONS ,SIMPLIFIED

,SIMPLIFIES ,SIMPLIFY ,SIMPLIFYING ,TRANSFORM ,TRANSFORMATION

,TRANSLATE ,TRANSLATED ,TRANSLATIONS ,IMPROVE ,IMPROVED

,IMPROVEMENT ,IMPROVEMENTS ,IMPROVES ,IMPROVING ,IMPROVMENT

,IMPROVMENTS ,INCREASED ,INCREASES ,INCREASING ,INCREMENTED

,INCREMENTING ,INCREMENTS

Preventive

ANALYSIS ,ANALYZE ,AVOID ,AVOIDS ,AVOIDED,AVOIDING ,COMMENT

,COMMENTED ,COMMENTING ,COMMENTS ,FULL_SUPPORT ,INCLUDE

,INCLUDED ,INCLUDES ,REBUILD ,REBUILT ,RECREATE ,REGENERATE

,REIMPLEMENT ,REIMPLEMENTAION ,REIMPLEMENTS ,REINSERT

,REINSTALLED ,REINTRODUCED ,REINVENTED ,REVIEW ,REVIEWED ,REVISE

Analyzing the Change Profiles of Software Saini and Kaur

65

,REVISED ,REUSE ,REUSED ,REVISION,RETAIN ,RETAINED ,RETAINING

,RETHINK ,RE-THINK ,RETHINKING ,PROPOSAL,PROPOSED

,PROPOSING,VOTE,VOTES,VOTEING,VOTED,REVOTE,REVOTES,REVOTED,REVOTI

NG

Enhancement

ADD ,ADDED ,ADDIN ,ADDING ,ADDITION ,ADDITIONS ,ADDS ,ENHANCE

,ENHANCED ,ENHANCEMENT ,ENHANCEMENTS ,ENHANCES ,EXPENDING

,EXPENDED ,UPDATE ,UPDATED ,UPDATES ,UPDATING ,UPGRADE

,UPGRADES ,UPGRADING ,READDED ,READDITION

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

66

