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ABSTRACT 

This paper analyzes the change history of various software systems for 
understanding their evolutionary behavior with respect to the type of changes 
performed over a period of time. The main objectives of this research work 
are: (a) What types of changes are most likely to occur in a software system 
during its evolution? (b) Is there any pattern in the type of changes performed 
over time in a system?   An automated keyword based categorization 
technique is applied to the textual description of commit records of the 
software systems to categorize change activities into various types such as: 
Adaptive, Corrective, Perfective, Enhancement, and Preventive. The study 
finds that corrective changes are the maximum and preventive changes are 
the least in the software systems analyzed here. 

Keywords: GIT, Software Maintenance, Software Evolution, Open Source 
Software. 

 

1- INTRODUCTION  

Software evolution refers to the phenomenon of software change and growth. 
The environment in which software has to work changes over time and the 
software itself must adapt to this changing environment. Lehman’s first law [1] 
of software evolution stipulates that useful real-world software systems (i.e., 
E-type) must undergo change in response to various types of requirements 
such as corrective, adaptive, perfective, and preventive[2-4]. Kemerer and 
Slaughter [5] point out that there are several patterns that characterize the 
maintenance (evolution [6]) of a software system. A relatively high volume of 
corrective changes takes place immediately after the system becomes opera-
tional. It stabilizes as the system matures, but increases when the system ag-
es (due to system entropy). However, functionality enhancement related 
changes are done on a fairly regular basis. We could not find out any research 
work which supports/refuse these claims. So it becomes a topic of study in 
this research paper.  

Previous works [7], [8] on change types and frequency of their occurrence are 
based on surveys. An empirical study [9], reported in 2003, finds significant 
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differences in the distributions of various change types as against the results 
reported by the survey based studies. Among the reasons cited for the differ-
ence in results include ‘change in the nature of software development’. It may 
be interesting to observe the results after a gap of another ten years given the 
emergence of new development approaches, such as incremental and itera-
tive development [10]. Moreover, these papers do not consider patterns of 
change in the change types during the software evolution as talked about in 
[5] and being studied in this research work. The study analyses the data col-
lected from open source software systems as it may clarify the doubts regard-
ing lack of systematic maintenance in case of such systems [11].  

This research aims to study the following: 

1) What types of changes are most likely to occur in a software system during 
its evolution? 
2) Is there any pattern in the type of changes performed over time in a sys-
tem? 
 

Section 2 of this paper discusses the related work. Section 3 specifies the 
data collection procedure. The change categorization approach is specified in 
Section 4. Section 5 presents the used methodology along with validation of 
the automated change categorization approach. The experimental results and 
its statistical analysis are presented in Section 6. The discussion of the ob-
tained results is specified in Section 7. Section 8 concludes the paper and last 
section gives the future directions for the work. 

2- LITERARTURE REVIEW 

Lientz, Swanson, and Tompkins [7] carried out a survey on the relative effort 
put in adaptive, corrective, and perfective types of maintenance. The study 
stated that 17.4% of maintenance effort was categorized as corrective in na-
ture; 18.2% as adaptive; 60.3% as perfective; and 4.1% was categorized as 
‘other’. Nosek and Palvia [8] repeated the same experiment and obtained sim-
ilar results. However, Schach et al. [9] conducted an empirical study in 2003 
and found a significant difference in the results from the previous survey 
based studies.  

Lee and Jefferson [12] found the distribution of maintenance effort of a web 
based Java application similar to the one reported by Basili et al. [13] for soft-
ware, developed using a different programming paradigm (FORTRAN and 
Ada). Sousa et al. [14] studied 37 large organizations situated in Portugal us-
ing a survey based approach. They concluded that, on average, organizations 
spend 48.6% of the maintenance effort on adaptive maintenance; 36.2% on 
corrective; only 1.7% on preventive; and 13.5% on perfective maintenance. 
Yip and Lam [15] conducted a survey of the state of software maintenance in 
Hong Kong. The results of the study indicate that enhancement related work 
is the largest among all the maintenance categories (39.7%) followed by cor-
rective (15.7%).  
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Unlike the studies which model software maintenance by taking a snapshot of 
software at one point of time, next paragraphs mention the work which inves-
tigates the changes in maintenance types covering software life time or a por-
tion of a life time.     

Abran and Nguyenkim [16] did a trend analysis of maintenance workload dis-
tribution for a time period of two years in a Canadian financial institute. The 
trend analysis showed cyclic fluctuations in almost all types of changes with 
perfective changes decreasing sharply towards the later phases of the time 
period.  

Gefen and Schneberger [17] examined a state-of the art Information System 
for 29 months. They could identify three distinct periods. An initial phase 
shows an upsurge in corrective modifications (stabilizing phase), followed by 
the addition of new functions to the existing applications (improvement 
phase), and then by the addition of new applications (expansion phase). 

Another study investigates the changes of maintenance requests during the 
lifetime of a large software application examined over a 67 month period [18]. 
They identify four distinct stages. User support types of maintenance requests 
dominate the first stage, corrective changes dominate the second stage, and 
enhancement type of changes dominates the third stage. In the last stage, all 
these types of change requests diminish and the organization starts looking 
for a replacement of the software.  

A few studies have been conducted which attempt to construct descriptive 
and predictive models for maintenance releases. Goulao et al. [19] used the 
time series forecasting model to predict software maintenance and evolution 
request in an open source software. They used an ARIMA Model [20] for pre-
diction of software evolution trends and seasonal patterns. Kemerer and 
Slaughter [5] proposed an empirical approach to study software evolution. In 
this paper a longitudinal research is performed by using sequence analysis. 
This study allows understanding of how software maintenance activities and 
costs change over time and gives information about current maintenance and 
development practices. Kemerer and Slaughter [21] discussed the software 
evolution drivers and dynamics. They conducted the research in three phases. 
In the first phase, various patterns of software evolution is investigated and 
assessed whether they are consistent with the laws of software evolution [22]. 
In the second phase, various drivers of software maintenance are identified 
and in the last phase the modeling and prediction of software objectives are 
presented.  

In the context of this work, software change classification may also be of in-
terest to the readers. Swanson [23] gave the first and the most commonly 
used classification.  Mockus and Votta [2] suggested an automated method of 
classifying software changes based on their textual descriptions.  In this paper 
they provided a classification of changes, on the basis of specified keywords 
in the textual abstracts of changes, into three primary categories (adaptive, 
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corrective, and enhanced) and introduced another category (inspection 
maintenance). Hassan [24] extended the work of Mockus and Votta [2] to 
classify change messages. They presented an automated classification of 
change messages in open source software projects, and classified the change 
messages into mainly three types as a bug fix, a feature introduction, or a 
general maintenance change. Kim et.al [25] used a machine learning classifier 
to determine the type of change and classify it as either buggy or clean 
change. Lehnert et al. [26] discussed the change classifications, but they re-
strict to fine grained changes only. Chapin et.al [27] discussed about the types 
of software evolution and software maintenance. They discuss the classifica-
tion of software maintenance activities for practitioners, managers, and re-
searchers. They used a clustering method to combine the various activities 
into clusters.  

The study given in [2] is of our interest. Various issues which are not dis-
cussed or presented in the paper are considered as the base of our research 
work. The issues which we found are as follows:- Change Classification types 
are limited,  Number of keywords specified are less, some common keywords 
are not included and they don’t specify the strong reason for their elimination, 
frequency count of various change categories and their subcategories is not 
shown.  

Most of these studies do not consider the frequency of different of types of 
changes; rather they measure effort spent in making changes corresponding 
to the different change types. It has been observed that corrective changes 
demand less than half of the effort of non-corrective changes (When change 
set size is controlled) [28]. So effort distribution cannot be used as an indicator 
for change distribution. This study is first of its kind as we could not find any 
research work which does a trend analysis of change distribution in open 
source software. In this research work the change history data of open source 
software projects are first classified into particular change categories and then 
analyzed both graphically and statistically to find the existing common pattern 
in the change activities. 

3- DATA COLLECTION  

We selected six open source software projects for performing the analysis. 
These projects are selected on the basis that all of them have high number of 
commits, authors and have active development, In this data set, PostgreSQL 
and GnuCash (16-17 years) are the software systems with long history. With 
respect to this, Twitter-MySQL and PHP-src can be considered with medium 
history (13-14 years), and Apache-Tomcat and Wordpress with comparatively 
short history (8-10 years).  

The repositories of the open source software projects are obtained from GIT 
[29] or GIT Hub [30].  These repositories are downloaded to make clone of the 
original repository onto the local machine using GIT Bash. The version wise 
change history of projects obtained from these repositories by using log –
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oneline command and stored in .txt files. The repository information along with 
the descriptive statistics of the projects is provided in Table 1.  

 

Table 1 Descriptive statistics of the six open source software projects 

Software  

Projects 

Origin 

Date 

Data  

Collection 

Date 

Number 

of year 

Number 

of  

Authors 

Total Com-

mits Ana-

lyzed 

avg, min, 

max   

Commits 

each year 

Postgre-

SQL 
7/9/1996 5/21/2013 17  37 43644 

2567, 963, 

3120 

WordPress 4/1/2003 5/21/2013 10 46 24249 
2424, 669, 

4596 

Twitter 

 MySQL 
8/1/2000 5/21/2013 13 1270 71527 

5502,  

47, 13401 

Php-Src 4/7/1999 5/20/2013 14 372 83654 
5975,  

1887, 8541 

Apache 

 Tomcat6.0 
10/20/2005 4/30/2013 8 19 5216 

652,  

50, 1023 

GnuCash 11/1/1997 5/21/2013 16  34 19762 
1235, 222, 

3019 

 

The basic objective of collecting this data is that we want to 

A) Categorize each commit record into various change categories.  

B) Study the change pattern  

4- CHANGE CLASSIFICATION APPROACH 

4-1 CHANGE CLASSIFICATION CATEGORIES 

Majority of the research studies do not agree on a uniform categorization of 
change types. We consulted Swanson [23], IEEE [31] [32], and ISO\IEC 
14764 [33] for deciding the type of change categories; and identified Adaptive, 
Corrective, Perfective, Enhancement, and Preventive as the main change 
categories. The Adaptive category consists all of those activities which are 
performed due to the changing environment such as adjusting of code, feature 
etc. The Corrective change consist all corrective type of activities such as fix-
ing, identification and isolation of the the bugs. Corective changes are the 
most common type of changes which are performed at the most in all evolving 
software. All the rearrangement, maintenance activities like code beautifica-
tion is classified as the Perfective changes. Preventive type of changes con-
sist all those activities which are performed with respect to the future mainte-
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nance such as re-implementation, revision, re-installation of certain features. 
The main difference between the perfective and preventive changes is in the 
scope of the maintenance where perfective is limited with current mainte-
nance where as the preventive is more concerned about the future mainte-
nance activities. The Enhancement category was added so as to detect the 
new functionality additions and separate them from changes done to improve 
the existing software.  The motivation for this is the change in the develop-
ment process followed nowadays (agile software development) from the times 
when the change classification was proposed (traditional process models). 
Even the concept of software evolution has become more prevalent over the 
period of time in comparison to the age old concept of software maintenance.  

4-2 SPECIFICATION OF KEYWORDS  

The change history of the six open source software projects is manually ana-
lyzed by both the authors individually to find the list of significant keywords 
(keywords in accordance with the definition of specified change category). 
The keyword which is in accordance with a particular change type definition is 
placed in that change categories. For example fixes and its similar terms like 
fixed, fixing specifies a corrective action, hence placed in corrective change 
category. Similarly keyword like adjust, allocates indicates the adaptive action 
is performed. Finally, the individual keywords list of each author is consulted 
by both the author together to find any discrepancy in categorization of partic-
ular keywords in a specified change category or any keyword which is missed 
by one but identified by another author. This double-manual evaluation ap-
proach eliminates the chances of missing keyword or placing a keyword in 
wrong change category. Further, for generalization of the list of keywords we 
used the WordNet [34] which allows the grouping of keywords based on the 
meaning of the keywords such as  keywords like fix, fixed, fixing, fixes are 
grouped as one keyword such as fixes. This reduces the number of keywords 
in the specified list.  At last the concept of tf-idf [35] is also used to eliminat all 
those words which are irrelevant in the text. The generalized list of identified 
keywords and their specified categories is shown at the end of paper in Ta-
ble11 of Annexure 1. We assumed that this list of keywords is enough and 
efficient to analyze the history and trends of the open source software pro-
jects.  

4-3 FILTERING OF COMMIT HISTORY 

The collected data is very much unstructured. It is found that at many commits 
entries in the change log no commit message is written, or committer of the 
change had written some unusual text. So the collected version wise commit 
history of the all the open source software require filtering process to remove 
all those commits entries. In this research work we had used manual and au-
tomated approach for filtering of the commit history. For automated filterining, 
a code is written in Java which itself look and eliminates the blank commit 
(commit at which no comment is mentioned) and the unusual commit (commit 
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message with no meaning, or do not contain listed keyword) from commit his-
tory of all six projects. Further, filtered version wise commit history of all the 
open source software projects is evaluated and cross checked manually by 
main author of this paper to filter out any remaining blank commit or unusual 
commit, which are missed out in automated filterining process. So at the end, 
we got filtered version wise commit history which does not have any blank or 
unusual commit.  

4-4 CRITERIA FOR ASSIGNING CHANGE CATEGORY TO COMMIT 
RECORD 

The assigning of the change category and counting the particular change cat-
egory frequency is done automatically by the program written in Java. Each 
commit record in the commit history is looked to find out its possible change 
category. The specified criteria which are followed for assigning the change 
category consist of the following: 

a) Look for the all specified keywords in a commit record and measures 
the frequencies of each keyword. 

b) Look for change category in which these keywords lies. 
c) The keyword with highest frequency will decide the change category. 

For example, if in a commit record keyword adjusted has highest 
count, then it means this commit belongs to the Adaptive change cat-
egory. 

d) In case, if the two keywords from different change category have the 
same occurrence frequency, then the keyword which is occurring first 
in the commit record is considered as the decisive. 

e) The commit record which does not contain the specified keywords is 
skipped.    

f) The commit record which does not have any commit message is also 
not considered in this classification. 

 

5- METHODOLOGY  

The version wise change history of all the open source software projects is 
evaluated separately to categorize each commit record (textual description) 
into a specified change category. This categorization is performed automati-
cally by the program which is written in Java. The program satisfies and con-
siders all the classification criteria specified before in this paper and gives 
output as the count of all the classification categories (Adaptive, Corrective, 
Perfective, Enhancement, and Preventive) for a particular version of the open 
source software.  

5-1 VALIDATION OF AUTOMATED CHANGE CLASSIFICATION AP-
PROACH  
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For validation of the automated classification approach we used the same 
approach as used by the Mokus and Votta [2]. We consulted four experts (2 
open source software developers, 1 Professor, 1 Ph.D researcher) in the field 
of open source software evolution. We asked them to manually classify  each 
commit record in the change log into a particular change category by using 
the same categorization criteria as used for the automated classification.We 
used the Cohen’s Kappa (K) to evaluate the agreement between the manual 
and the automated change classification. In Table 2,3,4,5, the manual (by dif-
ferent experts) and the automated classification of commits of first version of 
GNU Cash v1.3 is shown. The rows and columns of these tables specify the 
manual and automated categorization data respectively. 

 
Table 2 Comparison of Expert 1 Classification with Automated Classification of GNU 

Cash version v1.3 

 
Automated Classification 

Expert 1   

Classification 
Adaptive Corrective Perfective Enhancement Preventive 

Adaptive 70 0 30 0 0 

Corrective 20 576 13 161 8 

Perfective 0 0 100 0 0 

Enhancement 0 0 0 300 0 

Preventive 0 0 10 0 6 

 
Table 3 Comparison of Expert 2 Classification with Automated Classification of GNU 

Cash version v1.3 

  Automated Classification 

Expert 2  

Classification Adaptive Corrective Perfective  Enhancement Preventive 

Adaptive 70 0 21 0 0 

Corrective 20 576 33 161 0 

Perfective  0 0 87 0 0 

Enhancement 0 0 12 300 4 

Preventive 0 0   0 10 

 
Table 4 Comparison of Expert 3 Classification with Automated Classification of GNU 

Cash version v1.3 

  Automated Classification 

Expert 3 

 Classification Adaptive Corrective Perfective  Enhancement Preventive 

Adaptive 70 0 21 0 0 

Corrective 18 573 33 160 1 

Perfective  2 2 86 0 4 
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 Enhancement 0 1 12 300 3 

Preventive 0 0 1 1 6 

 

Table 5 Comparison of Expert 4 Classification with Automated Classification of GNU 

Cash version v1.3 

  Automated Classification 

Expert 4  

Classification Adaptive Corrective Perfective  Enhancement Preventive 

Adaptive 70 0 21 0 0 

Corrective 18 573 33 160 1 

Perfective  2 2 87 0 0 

 Enhancement 0 1 12 301 3 

Preventive 0 0  0 0  10 

 

The calculated Kappa coefficient (shown in Table 6) for all the projects, lies 
between [0.5-0.8]. It indicates the existence of a moderate agreement be-
tween the automated and manual classification. This high value of the Kappa 
coefficient validates the fact that automated classification is valid and effec-
tively categorizes the commits into different change categories. 

 

Table 6 Kappa Coefficient for the six software project’s (first version only) 

  Kappa Coefficient 

open source software Auto/Expert1 Auto/Expert2 Auto/Expert3 Auto/Expert4 

PostgreSQL  

(version PG95-1) 0.59 0.6 0.57 0.59 

WordPress 

 (version 1.5) 0.68 0.71 0.73 0.79 

Twitter MySql 

(version mysql3.23x) 0.58 0.57 0.56 0.60 

Php-Src 

(version php4.0) 0.5 0.52 0.58 0.55 

Apache Tomcat 6.0 

(version 6.0.0) 0.69 0.7 0.68 0.71 

GnuCash  

(version v1.3) 0.70 0.69 0.72 0.69 
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6- RESULTS AND ANALYSIS 

In this section the results obtained by analyzing the commit records of differ-
ent versions of open source software systems are presented. The results are 
shown in three steps. In step one, change distributions are analyzed. The data 
are presented using pie-charts. In the second step, change pattern study of 
different software is presented. The change pattern in the evolution of open 
source software has been presented using various tools such as bubble chart, 
and line chart. Bubble chart gives a strong visual appeal. Line chart has been 
used to simplify the picture as much as possible. In the third section, the 
change categorization data is statistically analyzed, to find the variation (fluc-
tuation) and the change trend in the different change categories of the open 
source software projects. 

6-1 CHANGE DISTRIBUTION ANALYSIS 

This section analyses the distribution of different change categories by taking 
into consideration the whole change log of the software as a single unit of 
analysis. The pie-charts (see Fig. 1) indicate that the change distributions are 
different across most of the software systems. Corrective changes have the 
maximum share in the total number of changes in all the data sets. Preventive 
changes have the minimum share in all the other change logs except for Twit-
ter MySQL and Apache Tomcat. Code restructuring has been taken up more 
frequently in these two programs.  

Postgre SQL resembles GnuCash in change distribution (see Table 7). They 
both have a fare share of perfective and enhancement related changes, and 
comparatively lesser number of corrective changes.  These distributions are 
comparable with that of Mockus and Votta [2], and Schach et al.’s [9] studies 
as they both focus on frequency of maintenance types and not on mainte-
nance effort. Interestingly for the first three systems (PostgreSQL, GnuCash, 
and Twitter MySQL), changes in adaptive, perfective, and enhancement cate-
gories (when combined) are more than 45% (as in [2]), and corrective chang-
es are close to 34%. But for the other three systems (PHP-src, Tomcat, and 
WordPress), changes when combined in the three categories are less than 
45% (as in [9]), and corrective changes are close to 50%. Here we consider 
the changes of primary types only.  
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    (a)                                                  (b) 

  

                         (c)                                               (d)                                           

     

                           (e)                           (f)   
         

 

 

Figure 1 Pie charts representing the percentage count of each change category in (a) 
PostgreSQL (17 yrs) (b) GnuCash (16 yrs) (c) Twitter MySQL (13 yrs) (d) Php-Src (14 

yrs) (e) Apache Tomcat (8 yrs) (f) Wordpress (10yrs) 
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Table 7 Change Distribution in Change Logs of various software Systems 

 

Type of 

Change 

Postgre-

SQL 
GnuCash 

Twitter 

MySQL 

Php-

Src 

Apache 

Tomcat 

Word-

Press 

Schach 
et al.[9] 

Mockus 
et al.[2] 

Corrective 26.70% 31.00% 35.00% 45.40% 41.30% 49.50% 50% 34% 

Adaptive 19.60% 17.10% 19.30% 16.00% 12.20% 12.50% 2-4% - 

Preventive 8.10% 4.80% 14.80% 3.10% 19.40% 7.30% - 4% 

Perfective 22.50% 20.70% 16.80% 13.40% 11.90% 15.40% 

36-
39% 

45% 

(also 
includes 
adaptive 

changes 
) 

Enhance-

ment 
23.00% 26.40% 13.20% 22.10% 16% 15.30% 

    

6-2 CHANGE PATTERN ANALYSIS  

PostgreSQL:  

Figure 1 (a) makes it clear that the corrective changes have the maximum 
percentage and preventive has the least percentage in PostgreSQL. It speci-
fies that most of the change activities in PostgreSQL are corrective in nature 
followed by enhancement and perfective changes. The bubble chart in Figure 
2(a) specifies the frequency of each change category in different versions. 
The size of bubble depicts the frequency count of the change performed. It is 
found that at the start of PostgreSQL evolution, change activity is very slow 
and corrective changes are the most dominant among all the change types. 
After the 4

th
 version, there is rapid increase in the activity of all the change 

categories. The corrective changes are surpassed by enhancement and per-
fective changes at some points, while least activity is found in preventive.  

The peaks and troughs in the change pattern become more clearly visible in 
Figure2 (b). It specifies the trend of changes, and gives the comparison be-
tween frequency counts of different change categories over a period of time. 
As per the change pattern, corrective changes are the most prominent in the 
beginning followed by enhancement changes in the middle release. Towards 
the last releases of this data set, the perfective changes become the most 
prominent. The preventive change category has very less activity and remains 
at the bottom of the graph throughout. In the change pattern plot, it is found 
that there is not much fluctuation in the change activity. It starts from a lean 
period, remains high for a number of releases, and seems to be heading to-
wards a lean period again.     
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(b) 

  
Figure 2 (a) Bubble chart, (b) Line Chart representing the frequency count of each 

change category in PostgreSQL 

 

GnuCash: 

There is a lot of fluctuation in the change activity of this software system (Fig-
ures 3(a) and 3(b)). Sudden change is observed at release 1.4, and 1.7. Oth-
erwise the change is gradual. Except for preventive changes, all types of 
changes follow the same pattern. Most of the times, they all increase (may be 
in different proportions) at the same time and also decrease at the same time. 
Corrective changes are dominant throughout. Preventive changes are the 
least in the whole change history.  
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(a). 

 

 

 

 

  

 
 
 

 
 
 
 

(b) 
Figure 3 (a) Bubble chart, and (b) Line Chart representing the frequency count of each 

change category in all the versions of GnuCash 

 
 
Twitter MySQL: 
The change activity starts from a lean period with a major fluctuation after that 
(Figures 4(a) and 4(b)). Corrective changes are dominant, but not in all the 
releases. It is important to watch the increase in preventive changes, which 
has been least in other software systems analyzed in this study. As in 
GnuCash, all the changes increase and decrease together.  
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(b) 

Figure 4 (a) Bubble chart, (b) Line Chart representing the frequency count of each 

change category of Twitter MySQL 

 
WordPress: 
The preventive changes are the least performed changes in all the versions 
and they remain at the bottom of the graph (Figures 5(a) and 5(b)). However, 
none of the other systems show the trend for corrective changes as in this 
software system. Corrective changes are the most dominant in all the versions 
and it is clearly seen from the given plot. Another trend of similar in-
crease/decrease in all the changes is observed in this case too.  
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(a) 

(b)                                                                                          

Figure 5 (a) Bubble chart, (b) Line Chart representing the frequency count of each 
change category of WordPress 

 
Php-Src: 
Changes, except preventive, are very regular in all the initial seven releases 
(Figures 6(a) and 6(b)). Later on, corrective changes shoot up. The corrective 
changes have the highest frequency followed by enhancement changes, 
where as preventive has the least. The adaptive and perfective change cate-
gory curves overlaps throughout. After php5.1 release there is rapid continu-
ous increase in the growth of each curve which remains for 2-3 versions fol-
lowed by a decline in the curve.  
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(a) 

 

 

(b) 

Figure 6 (a) Bubble chart, (b) Line Chart representing the frequency count of each 
change category of Php-Src 

 

Apache Tomcat6.0: 
In case of Apache Tomcat, the time span between various releases is very 
uneven and short. There are many releases which are released with a gap of 
one day or even on the same day. Due to that, very few or no change activity 
is present at many of the places in the bubble chart (Figures 7(a) and 7(b)). 
Initially, all types of changes are significant only to decrease in the next re-
lease.  Not much activity is observed after that. Corrective changes gradually 
increase towards the middle of the change history study period. Preventive 
changes also follow the corrective changes after release 6.0.20. Here adap-
tive changes are very less.  
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(b) 
 

Figure 7 (a) Bubble chart, (b) Line Chart representing the frequency count of each 

change category of Apache Tomcat 

 

6-3 STATISTICAL ANALYSIS 

6-3-1 ANALYSIS OF VARIANCE 

The variation in the change categorization data of all software is statistically 
tested by using the variance. The existence of variance (shown in Table 8) 
indicates the variation in the data. It is found that the variance of Corrective 
change category in all software is higher than all other change types. Further, 
change categorization data is evaluated to find whether the different change 
categories have same variance or not (i.e having same or different change 
count). Although the Table 8 indicates the values of variance are not same but 
this (homogeneity of variance) is cross validated by using the Levene test. 
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The obtained p- values for the open source software projects are shown in 
Table 9. The calculated p-value of all the software is lower than 0.05. Hence 
the null hypothesis that all change categories have homogenous (equal) vari-
ance is rejected for all the software projects. 

 

Table 8 Calculated variance for each change category 

Software Adaptive Corrective Enhancement Perfective Preventive 

PostgreSQL 57937.257 70266.8187 89149.427 78811.6959 8655.7836 

GnuCash 18605.423 52767.3077 40631.192 30508.4103 2076.3077 

Twitter MySQL 2351135.8 6915811.667 876609.95 1836115.667 2941111 

Php-Src 709253.67 7174111.491 1398825.2 522288.6909 29373.891 

Apache Tomcat 701.2802 6606.2425 912.6408 420.6693 1923.8073 

WordPress 23097.543 118341.2667 24113.543 30187.4095 5578.0952 

 

Table 9 Levene-test for testing the homogeneity of variance  

Software p-value 

PostgreSQL 0.0024381 

GnuCash 0.000797 

Twitter MySQL 0.0157528 

Php-Src 0.0143949 

Apache Tomcat 0.0001702 

WordPress 0.0029837 

 

 6-3-2 TREND ANALYSIS 

The test for variance indicates that the change count value of a particular 
change category does not remain constant and vary from version to version. 
The variation in the data also indicates the existence of possible trend (in-
creasing/decreasing) with which the change activities are performed.  The 
linear regression analysis is performed on the change categorization data of 
different software to find out possible trends. The slope of the regression 
equation is the indicator of trend for analysed data. The positive and negative 
sign of the coefficient imply the increasing and decreasing trend respective-
ly.Table 10 shows the statistically significant trends (having significant t-
statistics). 
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Table 10 Trend analysis 

  
Regression Equation 

 

Slope (b)/ 

or trend 

 

Overall Trend 

PostgreSQL 

Adaptive y = 302.5614  +  21.4860  x 21.486 Increasing 

Corrective y = 554.5439  +  15.0982  x 15.0982 Increasing 

Enhancement y = 424.4561  +  18.2807  x 18.2807 Increasing 

Perfective y = 290.5614  +  30.3281  x 30.3281 Increasing 

Preventive y = 116.8772  +  9.6807  x 9.6807 Increasing 

GNUCash 

Adaptive y = 153.6154  +  7.5385  x 7.5385 Increasing 

Corrective y = 468.8846  +  -13.6758  x -13.6758 Decreasing 

Enhancement y = 385.4615  +  -9.7473  x -9.7473 Decreasing 

Perfective y = 216.6538  +  4.6099  x 4.6099 Increasing 

Preventive y = 37.8846  +  2.8516  x 2.8516 Increasing 

Twitter 

MySQL 

Adaptive y = 258.2857  +  389.2143  x 389.2143 Increasing 

Corrective y = 1819.4286  +  386.8929  x 386.8929 Increasing 

Enhancement y = 633.0000  +  151.6071  x 151.6071 Increasing 

Perfective y = 332.4286  +  311.8929 311.8929 Increasing 

Preventive y = -1304.2857  +  674.3214  x 674.3214 Increasing 

Php-Src 

Adaptive y = 1092.7455  +  5.3000  x 5.3 Increasing 

Corrective y = 1674.0727  +  251.8364  x 251.8364 Increasing 

Enhancement y = 1646.5455  +  -28.6364  x -28.6364 Decreasing 

Perfective y = 902.4545  +  6.2727  x 6.2727 Increasing 

Preventive y = 266.4545  +  -8.0909  x -8.0909 Decreasing 

Apache 

Tomcat 

Adaptive y = 13.8634  +  0.2499  x 0.2499 Increasing 

Corrective y = 48.9943  +  0.6656  x 0.6656 Increasing 

Enhancement y = 25.9701  +  -0.05920  x -0.0592 Decreasing 

Perfective y = 14.7269  +  0.1719  x 0.1719 Increasing 

Preventive y = -4.3073  +  1.6959  x 1.6959 Increasing 

WordPress 

Adaptive y = 106.6571  +  16.7179  x 16.7179 Increasing 

Corrective y = 1053.0476  +  -13.0643  x -13.0643 Decreasing 

Enhancement y = 291.4286  +  0.3714  x 0.3714 Increasing 

Perfective y = 178.7810  +  14.4607  x 14.4607 Increasing 

Preventive y = 163.6762  +  -2.9179  x -2.9179 Decreasing 
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 It is found that in the six open source software projects, the Adaptive and Per-
fective changes have increasing trend, means in all versions of these software 
the Adaptive and Perfective change are performed with increasing trend. For 
Corrective, Enhancement, and Preventive changes we found the mixed trend. 
The Corrective, Preventive changes have shown decreasing trend for two 
software (GnuCash, WordPress), (Php-Src, WordPress) respectively but has 
shown increasing trend in all other software. Similarly the Enhancement 
changes have shown mixed trend of increasing for three software 
(PostgreSQL, Twitter MySQL, WordPress) and   decreasing trend other three 
software (GnuCash, Apache Tomcat, Php-Src). 

7- DISCUSSION 

The change distribution, in sixopen source software projects are analyzed by 
classifying the commit activities into various change types. The classification 
of the commit record (textual description) is done by using the keyword based 
classification technique which follows the specified selection criteria. The 
whole process of categorization is an automated process accomplished by a 
program written in Java. The validation of the automated categorization meth-
od is done by finding the agreement between manual and automated catego-
rization using the Cohen-Kappa test.The high value of the agreement indi-
cates that the automated method is very much effective and efficient in per-
forming the categorization of the commit records into various change catego-
ries.  

The change distribution and change pattern analysis results have shown that 
the corrective changes are most often performed, where as the preventive 
changes have the minimum share in all change logs except for Twitter MySQL 
and Apache Tomcat as the Code restructuring has been taken up in these 
projects. In almost all the software projects the Enhancement activity is se-
cond among the change activities. Different charts (line, bubble and pie chart) 
give a very good indication of the change activity and its trends. It is observed 
that change activity in the projects follows the up and down trend. It does not 
remain constant. This variation in the data is tested statistically by finding the 
variance for each change category and then performing the Levene-test to 
find Homogeneity of the variance of different change categories. The output of 
the Levene-test has shown that the variance of all change categories is not 
Homogeneous. The overall increasing/decreasing trend in the various change 
category of all open source software is computed statistically by performing 
the regression analysis. The results of the trend analysis have shown that 
Adaptive and Perfective changes have increasing trend for all six open source 
software, where as the mixed trend (of increasing and decreasing) is found in 
other change categories. 
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8- CONCLUSION 

In this research work, a keyword based categorization technique is used to 
extract the change trends from the unstructured data of software change logs. 
The commit history of six open source software projects is obtained and ana-
lyzed for finding the change trends occurring during software evolution. In this 
paper, the commit record of six open source software systems is used to find 
the changes and their respective types. An analysis of the change distribution 
indicates that corrective changes are the maximum and preventive changes 
are the least. Though detailed comparison is not possible with the results of 
the existing studies (because of differences in the way change categories are 
defined), but broadly the change distributions of the systems studied here 
match with the data reported by two different studies. As far as the trend in 
change pattern is concerned, we find  that adaptive and perfective changes 
have increasing trend for all six open source software, where as the mixed 
trend ( of increasing and decreasing) is found in all other change categories. It 
is also found that corrective changes are most often performed in all the six 
projects, where as the preventive have the minimum share in all change logs. 
If change activity increases/decreases, it increases/decreases in all the 
change types in most of the cases. Change bursts occur randomly. Another 
observation is that change activity is less in the beginning, followed by in-
creasing and decreasing trend. 

9- FUTURE WORK 

In the future, we plan to investigate the characteristics (other than their 
change logs e.g. information from the project web site) of the software sys-
tems so as to understand the different patterns of their change. For example, 
it is observed that, preventive changes are very less throughout in some of the 
change logs but they follow an upwards trend in other cases. Fine-grained 
analysis of changes using keyword frequency is another direction for further 
research.    
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ANNEXURE-1 

Table 11 List of specified keywords for different change categories  

Corrective 

 

BAND_AID  ,BUG_FIX, BUG_FIXES, BUG_FIXED, BUGFIX   ,BUGFIXES ,BUGFIXED  

,BUG_FIXING,BUGFIXING,BUMP,CHECKING,CHECKS,CLEANUP_COMMENT  

,CLEANUP_COMMENTS ,COMMENT_CLEANUP,CLEAN   ,CLEAN_UP   

,CLEANED_OUT   ,CLEANING  ,CLEANOUT  ,CLEANS   ,CLEANUP   ,CLEANUPS   

,CLEARED   ,CLEARING   ,CLEARS   ,CORRECT   ,CORRECTED   ,CORRECTING   

,CORRECTS,DETECT  ,FIX   ,FIXED   ,FIXES   ,FIXES_A_COUPLE_OF_MINOR_BUGS   

,FIXING   ,FIXUPS   ,FLUSH ,PATCH   ,PATCHED   ,PATCHES   ,PATCHING    

Adaptive 

 

ABORTED  ,ABORTS  ,ACCEPT  ,ADJUST   ,ADJUSTED   ,ADJUSTING   ,ADJUSTMENT   

,ADJUSTMENTS  ,ALLOCATE ,ALLOCATING,ALLOCATED,ALLOCATES  

,ALLOW,ALLOWS   ,ALLOWED   ,ALLOWING   ,ALTER   ,ALTERED ,ALTERS,ALTERING  

,ALTERATION,BIND   ,BLOCK   ,BLOCKING,BLOCKS,BLOCKED,COMMIT   

,COMMITING   ,COMMITS   ,COMMITTING   ,COMMITTED,COMPARED  

,COMPARES,COMPARING ,COMPATABILITY   ,COMPATIBILITY   ,COMPATIBILTY   

,COMPATIBLE   ,COMPATIBLITY   ,COMPRESS   ,COMPRESSED   ,COMPRESSION   

,CONVERSION   ,CONVERSIONS   ,CONVERT  ,CONVERTS  ,CONVERTED   

,CONVERTING ,CHANGE    ,CHNAGES,CHANGED   ,CHANGING    ,DEACTIVATED 

,DEATIVATES,DEATIVATE,DEACTIVATING  ,DEACTIVATION   ,DEALLOCATE  

,DEALLOCATES ,DEALLOCATED   ,DEALLOCATION   ,DECOMPRESS   

,DECOMPRESSED   ,DECOMPRESSING   ,DECOMPRESSION   ,DECONSTRUCT   

,DECOUPLE   ,DECRYPT   ,DEFINES   ,DEFINING ,DEFINED  ,DEGRADE   ,DEGRADES   

,DEGRADING   ,DEGRADED,DEIMPLEMENTED     ,DISABLE   ,DISABLED   ,DISABLING   

,DISALLOW   ,DISALLOWED   ,DISALLOWING   ,DISALLOWS   ,DISCARD   

,DISCARDED   ,DISCARDING   ,DISCARDS   ,DISCONNECT   ,DOWNGRADE ,DROPS  

,DROPPED   ,DROPPING   ,DUMPED   ,ELIMINATE   ,ELIMINATED   ,ELIMINATES   

,ELIMINATING   ,ELIMINATION   ,ENABLE   ,ENABLED   ,ENABLES   ,ENABLING  

,EXCLUDE   ,EXCLUDED   ,EXCLUDES   ,EXCLUSION  ,FREED   ,FREES   ,FREEZE 

,FREEZES,FREEZED  ,FREEZING  ,GET_RID  ,IGNORE   ,IGNORED   ,IGNORES   

,IGNORING   ,IMPLEMENT   ,IMPLEMENTATION   ,IMPLEMENTATIONS   

,IMPLEMENTED   ,IMPLEMENTS   ,INITIALIZATION   ,INITIALIZE   ,INITIALIZED   

,INSTALLED,INSTALLING,MAINTAINING    ,RELOAD   ,RELOADED   ,RELOADING   

,RELOADS   ,RELOCATABLE   ,RELOCATE   ,RELOCATED   ,REVERSE   ,REVERSED   

,REVERT   ,REVERTED   ,REVERTING   ,REVERTS   ,RESCAN   ,RESCANNING 

,RESCANS,RESCVANNED,RESETS,RESET   ,RESETTING   ,RESOLVE   ,RESOLVED   

,RESOLVES   ,RESOLVING   ,RESTARTING   ,RESTORED   ,RESTORES   ,RESTORING   

,RESTRICT  ,SET   ,SILENCE   ,STOPPING   ,STOPS  ,STOPPED ,SUPPRESS   

,SUPPRESSED   ,SUPRESS ,SUPRESSING  ,SYNC   ,SYNCHRONIZE   ,SYNCRONIZE   

,SYNCRONIZE D,SYNCHRONIZED,TERMINATE   ,TERMINATED   ,TERMINATING   

,TERMINATION   ,TOLERATE  ,TOLERATED,TOLERATING,TOLERATES ,TRIM   
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,TRUNCATE   ,TRUNCATED   ,TRUNCATING   ,UNIFY   ,WRAPPED    

Perfective 

 

ARRANGE   ,AGGREGATE   ,AGGREGATES   ,BACK_OUT   

,BEAUTIFICATION,CODE_BEAUTIFICATION,CREATE   ,CREATES,CREATED   

,CREATING  ,DELETE   ,DELETED   ,DELETING   ,DELETIONS   ,DESTROY   

,DECREASE   ,DECREASED   ,DECREASES   ,DECREASING   ,DECREMENT   

,DECREMENTED   ,DECREMENTING   ,DECREMENTS   ,ENCRYPTED   ,ENFORCE   

,ENFORCED   ,EXTEND   ,EXTENDED   ,EXTENDING   ,EXTENSION   ,EXTRACTED   

,EXTRACTING ,GENERATE   ,GENERATED   ,GENERATES   ,GENERATING   

,GROUPED  ,INSERT   ,INSERTED   ,INSERTING   ,INSERTION   ,INSERTS   

,INTEGRATE   ,INTEGRATED   ,INTRODUCED   ,INTRODUCES   ,INVENT   ,INVOKE   

,INVOKES,INVOKING  ,MODIFICATION   ,MODIFICATIONS   ,MODIFIED   ,MODIFY   

,MODIFYIED   ,MODIFYING   ,Move, OPTIMIZATION   ,OPTIMIZATIONS   ,OPTIMIZE   

,OPTIMIZED   ,OPTIMIZING   ,ORDERING   ,ORGANIZE ,PREVENT   ,PREVENTING   

,PULLING   ,QUIET   ,RE_INCLUDE   ,READJUST   ,READJUSTMENT   ,REALLOCATED   

,REALLOCATION   ,REANALYSIS   ,REARRANGE   ,REARRANGED   

,REARRANGEMENT   ,REARRANGEMENTS   ,REARRANGES   ,REARRANGING   

,REASSIGN   ,REASSIGNED   ,REASSIGNING   ,RECHECK   ,RECONNECT   

,RECOVER     ,REDEFINE   ,REDEFINED   ,REDESIGN   ,REDO   ,REDUCE   ,REDUCES   

,REDUCING   ,REFACTOR   ,REFACTORED   ,REFACTORING   ,REFINE   ,REFORMAT   

,REJECT   ,REJECTING  ,REJECTS,REMOVAL   ,REMOVE   ,REMOVED   ,REMOVES   

,REMOVING   ,RENAME   ,RENAMED   ,RENAMING   ,REORDER   ,REORDERING   

,REORGANIZE   ,REPAIR   ,REPAIRED   ,REPAIRS  ,REPARING ,REPLACE   

,REPLACED   ,REPLACEMENT   ,REPLACES   ,REPLACING   ,REPRODUCE     

,RESTRUCTURE   ,RESTRUCTURING  ,RESTRUCTURED ,RETRIEVE 

,RETRIEVES,RETERIEVED  ,RETRIEVING  ,REMAKE   ,REVOKE   ,REWORK   

,REWORKED   ,REWORKS   ,REWRITE   ,REWRITER   ,REWRITES   ,REWRITING   

,REWRITTEN   ,ROLLBACK   ,SIMPLIFICATION   ,SIMPLIFICATIONS   ,SIMPLIFIED   

,SIMPLIFIES   ,SIMPLIFY   ,SIMPLIFYING   ,TRANSFORM   ,TRANSFORMATION   

,TRANSLATE   ,TRANSLATED   ,TRANSLATIONS   ,IMPROVE   ,IMPROVED   

,IMPROVEMENT   ,IMPROVEMENTS   ,IMPROVES   ,IMPROVING   ,IMPROVMENT   

,IMPROVMENTS   ,INCREASED   ,INCREASES   ,INCREASING   ,INCREMENTED   

,INCREMENTING   ,INCREMENTS    

Preventive 

 

ANALYSIS   ,ANALYZE   ,AVOID   ,AVOIDS  ,AVOIDED,AVOIDING ,COMMENT 

,COMMENTED   ,COMMENTING   ,COMMENTS  ,FULL_SUPPORT  ,INCLUDE   

,INCLUDED   ,INCLUDES  ,REBUILD   ,REBUILT  ,RECREATE ,REGENERATE   

,REIMPLEMENT   ,REIMPLEMENTAION   ,REIMPLEMENTS   ,REINSERT   

,REINSTALLED   ,REINTRODUCED   ,REINVENTED   ,REVIEW   ,REVIEWED   ,REVISE   
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,REVISED   ,REUSE   ,REUSED   ,REVISION,RETAIN   ,RETAINED   ,RETAINING   

,RETHINK   ,RE-THINK   ,RETHINKING ,PROPOSAL,PROPOSED  

,PROPOSING,VOTE,VOTES,VOTEING,VOTED,REVOTE,REVOTES,REVOTED,REVOTI

NG  

Enhancement 

 

ADD   ,ADDED   ,ADDIN   ,ADDING   ,ADDITION   ,ADDITIONS   ,ADDS   ,ENHANCE   

,ENHANCED   ,ENHANCEMENT   ,ENHANCEMENTS   ,ENHANCES  ,EXPENDING   

,EXPENDED   ,UPDATE   ,UPDATED   ,UPDATES   ,UPDATING   ,UPGRADE   

,UPGRADES   ,UPGRADING   ,READDED   ,READDITION 
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