

SecCheck: A Tool for Detection of
Vulnerabilities and for Measuring Insecurity

in Java Programs

Priyadarshini.R
(1)

, Nivedita Ghosh
(2)

 and Anirban Basu
(3)

(1) Department of CSE, East Point College of Engineering & Technology, Bengaluru,
(India)

Email: priya87darshini@gmail.com

(2) Department of CSE, East Point College of Engineering & Technology, Bengaluru,
(India)

Email: gh.nivedita@gmail.com,

(3) Department of CSE, East Point College of Engineering & Technology, Bengaluru,
(India)

Email: abasu@anirbanbasu.in

ABSTRACT

Software vulnerability is a weakness that can be exploited to get access to
the code making the software highly insecure. To make the software secure,
vulnerabilities must be identified and corrected. As identifying weaknesses
manually in large programs is time consuming, the process needs to be
automated. This paper discusses a tool called SecCheck developed to identify
vulnerabilities in Java code. The tool takes Java source files as input, stores
each line in memory and scans to find vulnerabilities. A warning message is
displayed when vulnerability is found. The tool can detect critical software
vulnerabilities not found by most of the other tools as well as calculate Degree
of Insecurity, a metric defined in this paper. SecCheck has been used to
calculate the Degree of Insecurity in two classes of programs: one written by
experienced Java programmers and the other by students. The experimental
results are discussed.

Keywords: Common Weakness Enumeration, Degree of Insecurity, SecCheck
Tool, Security Threat, Software Vulnerability, Tools for Vulnerability Detection.

1- INTRODUCTION

The security of software is threatened at various stages throughout its
lifecycle, inadvertently due to mistakes committed by developers or by
intentional hacking. Poor software design and implementation are the primary
causes of most security weaknesses [1][2].Security threats may also come
from web sites and web applications (webapps). Data centres and other
assets used for hosting web sites and their associated systems need to be
protected from all types of threats.

SecCheck: A Tool for Detection of Vulnerabilities Priyadarshini et al

67

mailto:priya87darshini@gmail.com
mailto:gh.nivedita@gmail.com
mailto:abasu@anirbanbasu.in

Annual Surveys conducted by the Computer Security Institute, the FBI, PwC,
Forbes etc. reveal that cyber criminals are implementing increasingly
sophisticated methods for targeting specific computer systems and

organizations: big and small. A recent vulnerability assessment study

performed on more than 250 Web applications from e-commerce, online
banking, enterprise collaboration, and supply chain management sites found
out that at least 92% of web applications are vulnerable to some form of
hacker attacks. It is doubtful whether the present Information Security
techniques will be able to protect critical software systems unless security
mechanisms are made an inherent part of the software.

Java has emerged as the language of choice for building large complex Web-
based systems, partly because of language safety features that disallow direct
memory access and eliminate problems such as buffer overruns. However,
despite these features, it is possible to make logical programming errors that
lead to vulnerabilities such as SQL injections and cross-site scripting attacks
[3]. A simple programming mistake can leave a Web application vulnerable to
unauthorized data access, unauthorized updates or deletion of data, and
crashing of applications leading to denial-of-service attacks [4].

Due to processing of critical information, it is important that software is
protected against malicious attacks and other risks so that it continues to
function correctly even under such potential threats. Threats can be identified
using application threat modelling and then evaluated by vulnerability
assessment. Nowadays, lot of attention is being given on building secure
software and on detecting vulnerabilities by static analysis [5][6]. Many types
of vulnerabilities exist in software systems injected in design and in
implementation phases, such as local implementation errors, inter procedural
interface errors (such as a race condition between an access control check
and a file operation), design-level mistakes (such as error handling and
recovery systems that fail in an insecure fashion, topology of the web of links,
deep linking, unspecified image dimensions), and object-sharing systems [7].
Efforts are required during design and implementation to make the software
secure and to protect the software against malicious attacks and other risks.

This paper discusses vulnerabilities that are injected in Java programs during
coding phase and describes a tool developed to detect the weaknesses and
alert the developer about these. The tool developed by the authors, and
named SecCheck detects vulnerabilities in any Java program caused by off-
by-one error, uncontrolled memory allocation, improper input validation,
improper check for unusual or exceptional conditions, arithmetic underflow,
dead code, de-serialization of un-trusted data, incorrect conversion between
numeric types, finalize() method declared public, and improper initialization,
absolute path traversal, uncontrolled resource consumption, uploading files of
dangerous type, manipulating input to file system calls, URL redirection to un-
trusted site, client-side enforcement of server- side security, sensitive cookies

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

68

http://www.watsonhall.com/methodology/threat-modelling.pl

of https session without ‘secure’ attribute, improper neutralization of http
headers for scripting syntax, and information exposure through log files.

The tool described here not only detects the vulnerabilities present in the code
but also calculates the Degree of Insecurity of input Java program. The
effectiveness of the tool has been studied by using it on calculating the
Degree of Insecurity in two classes of programs: one written by experienced

Java Programmers and the other by students.

Section 2 discusses the present state of research in the area and Table 1
presents the features of other tools available for detection of vulnerabilities
and provides a comparison of these with SecCheck. Section 3 discusses the
consequences of the vulnerabilities generally found in any software and
detected by the tool. Section 4 defines Degree of Insecurity in a program and
Section 5 discusses the working of SecCheck, Section 6 discusses the
Degree of Insecurity found by using the tool in two classes of programs: one
by professionals and another one by students. As expected the Java
programs written by the students are more prone to security attacks than
those written by professionals.

2- PRESENT STATE OF RESEARCH

Due to increased incidents of theft of information, Software Security is gaining
lot of attention [1][2]. CWE [7], a consortium which creates a catalog of
software weaknesses and vulnerabilities has been formed. It assists
organizations in selecting the right software tools and learning about possible
weaknesses and their possible impact and is enabling more effective
discussion, description, selection, and use of software security tools and
services. The catalogue prepared by CWE is helping the development teams
to find weaknesses in source code and in operational systems as well as have
better understanding and management of software weaknesses relating to
architecture, design and code. However, the current state of preventive and
corrective methodologies is inadequate.

Various tools as listed in Table 1 are available to identify and detect the
vulnerabilities present in source code in different programming languages.
However none of the tools discussed in Table 1 can detect all possible
vulnerabilities needed to safeguard against attacks from hackers.

The number of vulnerabilities detected by SecCheck is more compared to the
existing tools. Besides, the available tools do not calculate the Degree of
Insecurity. These features make SecCheck more useful to the software
developers.

SecCheck: A Tool for Detection of Vulnerabilities Priyadarshini et al

69

3- COMMON VULNERABILITIES IN SOFTWARE

Software vulnerabilities that are commonly found in Java programs as
discussed in CWE [7] are:

 Off-by-one Error

 Uncontrolled Memory Allocation

 Improper Input validation

 Improper Check For Unusual Or Exceptional Conditions

 Arithmetic Underflow

 Dead Code

 Deserialization of untrusted data

 Incorrect Conversion between Numeric Types

 finalize() Method Declared Public

 Improper Initialization

 Absolute Path Traversal

 Uncontrolled Resource Consumption(‘Resource Exhaustion’)

 Unrestricted Upload of Files with Dangerous Type

 Manipulating Input to File System Calls

 URL Redirection to Untrusted Site(‘Open Redirect’)

 Client-Side Enforcement of Server- Side Security

 Sensitive Cookies of HTTPS Session Without ‘Secure’ Attribute

 Improper Neutralization of HTTP Headers for Scripting Syntax

 Information Exposure through Log Files

These vulnerabilities are detected by the SecCheck tool in any Java program
and a warring message is displayed on detection along with line number
where it occurs.

The above mentioned vulnerabilities are briefly discussed here along with the
consequences of their presence.

3-1 OFF-BY-ONE ERROR

Off-by-one error (OBOE) is a logic error involving the discrete equivalent of a
boundary condition. It often occurs in computer programming when an
iterative loop iterates one time too many or too few. Usually this problem
arises when a programmer fails to take into account that a sequence starts at
zero rather than one (as with array indices in many languages), or makes
mistakes such as using "is less than or equal to" where "is less than" should
have been used in a comparison. This can also occur in a mathematical
context [8].

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

70

This may result in erratic program behaviour, including memory access errors,
incorrect results, a crash, or a breach of system security. Thus, they are the
basis of many software vulnerabilities and can be maliciously exploited.

Consequences

a. Overwriting of the least significant bit in the frame pointer of a block of
allocated memory can corrupt data, crash the program, or allow the execution
of malicious code.

b. Off-by-one error causes an exploitable condition where an attacker can
hijack the local variables for the calling routine.

c. Off-by-one error may result in erratic program behaviour, including memory
access errors, incorrect results, a crash, or a breach of system security.

3-2 UNCONTROLLED MEMORY ALLOCATION

The product allocates memory based on an untrusted size value, but it does
not validate or incorrectly validates the size, allowing arbitrary amounts of
memory to be allocated [9].

This vulnerability is possible in Java by initial size parameters in collections.
The code accepts an untrusted size value and allocates a buffer to contain a
string of given size [9].

Uncontrolled memory allocation leads to crashes of application due to out of
memory conditions. Attackers can make use of this to hack the data.

Consequences

a. Uncontrolled memory allocation leads to crash the application.

b. It may also lead to consumption of a large amount of memory on the
system.

3-3 IMPROPER INPUT VALIDATION

The product does not validate or incorrectly validates input that can affect the
control flow of a program [10].

When software does not validate input properly, an attacker is able to craft the
input in a form that is not expected by the rest of the application. This will lead
to parts of the system receiving unintended input which may result in altered
control flow, arbitrary control of a resource or arbitrary code execution [10].

SecCheck: A Tool for Detection of Vulnerabilities Priyadarshini et al

71

Consequences

a. An attacker could provide unexpected values and cause a program crash or
excessive consumption of resources, such as memory and CPU.

b. An attacker could read confidential data if they are able to control resource
references.

c. An attacker could use malicious input to modify data or possibly alter
control flow in unexpected ways, including arbitrary command execution.

3-4 IMPROPER CHECK FOR UNUSUAL OR EXCEPTIONAL
CONDITIONS

The software does not check or improperly checks for unusual or exceptional
conditions that are not expected to occur frequently during day to day
operation of the software [11].

The programmer may assume that certain events or conditions will never
occur or do not need to be worried about, such as low memory conditions,
lack of access to resources due to restrictive permissions, or misbehaving
clients or components. However, attackers may intentionally trigger these
unusual conditions, thus violating the programmer's assumptions, possibly
introducing instability, incorrect behaviour, or vulnerability [11].

Consequences

a. The data which were produced as a result of a function call could be in a
bad state upon return. If the return value is not checked, then this bad data
may be used in operations, possibly leading to a crash or other unintended
behaviours.

b. Leads to resource exhaustion, low memory conditions,

c. An attacker may be able to assert control before the software has fully

exited.

3-5 ARITHMETIC UNDERFLOW

The term arithmetic underflow (or "floating point underflow", or just "underflow")
is a condition in a computer program where the result of a calculation is a
smaller number than the computer can actually store in memory [12].

Arithmetic underflow can occur when the true result of a floating point
operation is smaller in magnitude (that is, closer to zero) than the smallest
value which can be represented as a normal floating point number in the
target data type. Underflow can in part be regarded as negative overflow of

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

72

the exponent of the floating point value. For example, if the exponent part can
represent values from −128 to 127, then a result with absolute value less than
2−127 may cause underflow (assuming that the exponent −128 is reserved for
values like −∞ which have no "normal" representation).

Consequences

a. Java runtime does NOT issue an error/warning message but produces an
incorrect result [12].

b. On the other hand, integer division produces a truncated integer and results
in so-called underflow. For example, 1/2 gives 0, instead of 0.5. Again, Java
runtime does NOT issue an error/warning message, but produces an
imprecise result [12].

3-6 DEAD CODE

In computer programming, dead code is code in the source code of a program
which is executed but whose result is never used in any other computation.
The execution of dead code wastes computation time as its results are never
used [13].

While the result of a dead computation may never be used, the dead code
may raise exceptions or affect some global state, thus removal of such code
may change the output of the program and introduce unintended bugs [13].

Consequences

a. Occupies unnecessary memory.

b. From the perspective of program maintenance; time and effort may be
spent maintaining and documenting a piece of code which is in fact
unreachable, hence never executed.

3-7 DESERIALIZATION OF UNTRUSTED DATA

The application de-serializes un-trusted data without sufficiently verifying that
the resulting data will be valid [14].

It is often convenient to serialize objects for communication or to save them
for later use. However, de-serialized data or code can often be modified
without using the provided accessor functions if it does not use cryptography
to protect itself. Furthermore, any cryptography would still be client-side
security -- which is a dangerous security assumption [14].

Data that is un-trusted cannot be trusted to be well-formed.

SecCheck: A Tool for Detection of Vulnerabilities Priyadarshini et al

73

Consequences

a. An attacker may be able to replace the intended file with a file that contains
arbitrary malicious code which will be executed.

b. Code could potentially make the assumption that information in the
deserialized object is valid. Functions which make this dangerous assumption
could be exploited.

3-8 INCORRECT CONVERSION BETWEEN NUMERIC TYPES

When converting from one data type to another, such as long to integer, data
can be omitted or translated in a way that produces unexpected values. If the
resulting values are used in a sensitive context, then dangerous behaviours
may occur [15].

Consequences

a. The program could wind up using the wrong number and generate incorrect
results.

b. Behaviour may have unintended consequences.

c. Leads to integer overflow and heap overflow.

3-9 FINALIZE () METHOD DECLARED PUBLIC

The program violates secure coding principles for mobile code by declaring a
finalize () method public [16].

A program should never call finalize explicitly, except to call super.finalize()
inside an implementation of finalize(). In mobile code situations, the otherwise
error prone practice of manual garbage collection can become a security
threat if an attacker can maliciously invoke one of your finalize() methods
because it is declared with public access [16].

Consequences

a. Can Alter execution logic

b. Execute unauthorized code or commands

c. Modify application data

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

74

3-10 IMPROPER INITIALIZATION

The software does not initialize or incorrectly initializes a resource, which
might leave the resource in an unexpected state when it is accessed or used
[17].

This can have security implications when the associated resource is expected
to have certain properties or values, such as a variable that determines
whether a user has been authenticated or not [17].

Consequences

a. Bypass of security may occur.

b. The uninitialized data may contain values that cause program flow to
change in ways that the programmer did not intend.

c. The software's operation may slow down, but it should not become unstable,
crash, or generate incorrect results.

3-11 ABSOLUTE PATH TRAVERSAL

The attack Absolute Path Traversal takes place when a software uses an
external input which is used to construct a pathname that is been created in
restricted directory but does not properly neutralize absolute path sequences
such as “/abs/path” that can resolve that location that is outside of that
directory so by this attacker traverses the file system to access files or
directories that are outside of that directory [18]. By such kind of weakness
attackers can traverse the file system to access files or directories that are
outside of the restricted directory.

Consequences

a. It exploits unchecked user input to control which files are accessed on the
server.

b. Attacker can traverse the file system remotely and can change contents of
file.

c. The attacker may be able to overwrite, delete, or corrupt unexpected critical
files such as programs, libraries, or important data.

SecCheck: A Tool for Detection of Vulnerabilities Priyadarshini et al

75

3-12 UNCONTROLLED RESOURCE CONSUMPTION (‘RESOURCE
EXHAUSTION’)

In this attack the software does not properly restrict the size or amount of
resources that are requested or influenced by an actor, which can be used to
consume more resources than intended.

Resources include memory, file system storage, CPU. If an attacker can
trigger the allocation of these limited resources but the number or size of
resources is not controlled, then the attacker could cause a denial of service
that consumes all available resources.

A Memory Exhaustion Attack against an application could slow down the
application as well as its host operating system [19].

Resource Exhaustion problems have at least 2 common causes:

a. Error conditions and other exceptional circumstances

b. Confusion over which part of the program is responsible for releasing

resource

Consequences

a. Most hackers spoof their IP or bounce data off of another machine so that it
is hard to track them.

b. If an attacker can trigger the allocation of resources, but the number or
size of the resources is not controlled, then the attacker could cause a denial
of service that consumes all available resources.

c. Many DoS attacks, such as the Ping of Death and Teardrop attacks, exploit
limitations in the TCP/IP protocols.

3-13 UNRESTRICTED UPLOAD OF FILE WITH DANGEROUS TYPE

Unrestricted uploading of files with any extension or any content size can be
dangerous because it can allow an attacker to upload malicious files and very
long length files which can be again virus that can destroy the confidential files
in the system. Even the web application running can allow for uploading file of
any extension which can indirectly affect the system while accepting the file of
any type.

 However, the attacker may upload files having virus or malicious file directly
or even large byte file so after this system can get into access anywhere and
is not safe anymore even so it becomes very difficult to analyse the depth of
the attack also [20].

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

76

http://www.webopedia.com/TERM/T/TCP_IP.html

Consequences

a. Arbitrary code execution is possible if an uploaded file is interpreted and
executed as code by the recipient.

b. The web server might be used as a warez server by a bad guy in order to
be host of malwares, illegal software, steganographic objects, and so on.

c. A malicious file can be uploaded on the server in order to have a chance to
be executed by administrator or webmaster later.

3-14 MANIPULATING INPUT TO FILE SYSTEM CALLS

This attack deals with an attacker who manipulates inputs to the target
software which the target software passes to file system calls in the OS. The
goal is to gain access to, and perhaps modify, areas of the file system that the
target software did not intend to be accessible [21].

Consequences

a. In order to create a valid file injection, the attacker needs to know what the
underlying OS is.

b. The attacker may steal information or directly manipulate files (delete, copy,
flush, etc.)

c. Attacker’s motive is to identify file system entry point and execute against
an over privileged system interface.

3-15 URL REDIRECTION TO UNTRUSTED SITE ('OPEN REDIRECT')

A web application accepts a user-controlled input that specifies a link to an
external site, and uses that link in a Redirect. This simplifies phishing attacks.

An http parameter may contain a URL value and could cause the web
application to redirect the request to the specified URL. By modifying the
URL value to a malicious site, an attacker may successfully launch a phishing
scam and steal user credentials. Because the server name in the modified link
is identical to the original site, phishing attempts have a more trustworthy
appearance [22].

Consequences

a. The user may be redirected to an un-trusted page that contains malware
which may then compromise the user's machine.

SecCheck: A Tool for Detection of Vulnerabilities Priyadarshini et al

77

b. The user may be subjected to phishing attacks by being redirected to an
un-trusted page.

c. The phishers may then steal the users’ credentials and then use these
credentials to access the legitimate web site.

3-16 CLIENT-SIDE ENFORCEMENT OF SERVER-SIDE SECURITY

In this above attack the software is composed of a server that relies on the
client to implement a mechanism that is intended to protect the server.

When the server relies on protection mechanisms placed on the client side, an
attacker can modify the client-side behaviour to bypass the protection
mechanisms resulting in potentially unexpected interactions between the
client and server [23]. The consequences will vary, depending on what the
mechanisms are trying to protect.

Consequences

a. Client-side validation checks can be easily bypassed.

b. Client-side checks for authentication can be easily bypassed, allowing
clients to escalate their access levels and perform unintended actions.

c. Attackers can bypass the client-side checks by modifying values after

the checks have been performed, or by changing the client to remove

the client-side checks entirely.

3-17 SENSITIVE COOKIE IN HTTPS SESSION WITHOUT 'SECURE'
ATTRIBUTE

The software is composed of a server that relies on the client to implement a
mechanism that is intended to protect the server.

The Secure attribute for sensitive cookies in HTTPS sessions is not set,
which could cause the user agent to send those cookies in plaintext over an
HTTP session [24].

Consequences

a. If the Secure attribute is not set for sensitive cookies in HTTPS sessions,
this could cause the user agent to send those cookies in plaintext over an
HTTP session with the product.

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

78

b. When the secure flag is not set for the session cookie in an https session,
this can cause the cookie to be sent in http requests and make it easier for
remote attackers to capture this cookie.

c. If we log in to a site with plain HTTP it is completely insecure, and anyone
in a public WLAN can sniff the data.

3-18 IMPROPER NEUTRALIZATION OF HTTP HEADERS FOR
SCRIPTING SYNTAX

The application does not neutralize or incorrectly neutralizes web scripting
syntax in HTTP headers that can be used by web browser components that
can process raw headers, such as Flash.

An attacker may be able to conduct cross-site scripting and other attacks
against users who have these components enabled [25].

Consequences

a. There are chances of occurring Cross Site Scripting and Cache Poisoning
Attacks.

b. Attackers may be able to obtain sensitive information like user credentials
or log file information.

c. If headers are not properly neutralized then there are can also be that
attacker can run arbitrary code that can be malicious.

3-19 INFORMATION EXPOSURE THROUGH LOG FILES

Information written to log files can be of a sensitive nature and give valuable
guidance to an attacker or expose sensitive user information.

While logging all information may be helpful during development stages, it is
important that logging levels be set appropriately before a product ships so
that sensitive user data and system information are not accidentally exposed
to potential attackers [26].

Consequences

a. Logging sensitive user data often provides attackers with an additional,
less-protected path to acquiring the information.

b. Malicious attackers will try to get your login information for any of the
services you're using, which will then allow them to break into the rest.

SecCheck: A Tool for Detection of Vulnerabilities Priyadarshini et al

79

c. User information regarding bank credentials or credit card details can get
exposed if given in simple text format in log file.

4- DEGREE OF INSECURITY IN A PROGRAM

Each of the weaknesses discussed in this paper has been assigned a severity
level defined in CWE. In this paper we define a metric for calculating the
Degree of Insecurity (referred to as ISM).

ISM=

where,

ISM stands for the Degree of Insecurity,
i is the type of vulnerability where i=1,2,....m
Wi is the Severity of Vulnerability in the software
Ni is the frequency of occurrence of vulnerability i.

The values of severity is taken from [7] and given below in Table 2

 Table 2: Severity of Vulnerabilities

Type of Vulnerability = i Severity = Wi

Off-by-one Error 18

Uncontrolled Memory Allocation 4

Improper Input validation 20

Arithmetic Underflow 4

Improper check for unusual or
exceptional conditions

12

Dead Code 3

De-serialization of un-trusted data 7

Incorrect Conversion between Numeric
Types

4

finalize() Method Declared Public 4

Improper initialization 1

Absolute Path Traversal 16

Unrestricted File Upload with Dangerous
Type

10

Uncontrolled Resource Consumption 14

Manipulating Inputs to File System Calls 3

URL Redirection to Un-trusted Site 3

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

80

Client Side Enforcement of Server Side
Security

4

Sensitive Cookies in HTTPS Session
Without ‘Secure’ Attribute

4

Improper Neutralization of HTTP
Headers for Scripting Syntax

1

Information Exposure through Log Files 5

5- WORKING OF SecCheck

SecCheck uses pattern matching methodology to detect weaknesses present
in Java applications. The tool takes as input any Java program and scans to
identify the vulnerabilities. If any vulnerability is detected then it displays
warning message. The steps followed are

 Select the input Java program

 Select from the drop down list types of vulnerabilities to be detected in
given input Java program

The tool displays type of vulnerabilities and the place of occurrence as shown
in Fig 1. It also gives the Degree of Insecurity in the input program

 Figure 1 Front end of SecCheck

 It has three functional modules as shown in Figure 2:

 Scanner: This module scans each line of source code one by one.

SecCheck: A Tool for Detection of Vulnerabilities Priyadarshini et al

81

Pattern Matching Module: After scanning, SecCheck compares each line to
find out if it contains a set of keywords which makes the program vulnerable to
security threats. This is done by matching each line with the list of strings
stored in a database.

Display Module: If there is a string match then a warning message is flagged
to the user.

After the entire program is scanned, the Degree of Insecurity is calculated and
displayed.

Figure 2: Architecture of SecCheck

6- EXPERIMENTAL RESULTS

We used the tool SecCheck for detection of vulnerabilities on two classes of
Java programs. Table 3 shows the programs written by the professionals
taken from different vulnerability tracking sites including few from Common
Weakness Enumeration (CWE) [7] site. Table 4 shows the programs written
by students of an engineering college.

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

82

The results of measurements in these programs are given in Tables 3 and 4
with the vulnerabilities detected and the Degree of Insecurity calculated as per
the expression in Section 4 of this paper.

Table 3: Degree of Insecurity calculated in Programs written by Java professionals

Name Of
Program

Source Size ISM

Concurrency http://stackoverflow.com/qu
estions/6084722/java-
threads-concurrency-delta-
off-by-one-error

3KB 48

Countdivisor http://math.hws.edu/javanot
es/c3/s4.html

3KB 13

Bouncingline http://www.java-
examples.com/generate-
bouncing-lines-using-
applet-example

5KB 81

Javapyramid http://www.java-
examples.com/java-
pyramid-3-example
http://www.java-
examples.com/prime-
numbers-java-example

2KB 36

Internlengthy http://howtodoinjava.com/2
012/10/31/why-not-to-use-

finalize-method-in-java/

2KB 21

Heapmemory http://javarevisited.blogspot
.com/2012/01/find-max-
free-total-memory-in-
java.html

2KB 75

Splitxmlfile http://stackoverflow.com/qu
estions/6341203/java-xml-
getattribute

3KB 162

Testgc http://howtodoinjava.com/2
012/10/31/why-not-to-use-
finalize-method-in-java/

2KB 73

Deserial http://javabynataraj.blogspo
t.in/2011/04/what-is-
deserialization-in-java-
write.html

2KB 52

Inputfilter http://stackoverflow.com/qu
estions/5003939/dead-

code-warning

3KB 100

Average http://www.cwe.mitre.org 5KB 339

 arraydemo http.//www.cwe.mitre.org 7KB 130

SecCheck: A Tool for Detection of Vulnerabilities Priyadarshini et al

83

http://www.java-examples.com/generate-bouncing-lines-using-applet-example
http://www.java-examples.com/generate-bouncing-lines-using-applet-example
http://www.java-examples.com/generate-bouncing-lines-using-applet-example
http://www.java-examples.com/generate-bouncing-lines-using-applet-example
http://www.java-examples.com/java-pyramid-3-example
http://www.java-examples.com/java-pyramid-3-example
http://www.java-examples.com/java-pyramid-3-example
http://www.java-examples.com/prime-numbers-java-example
http://www.java-examples.com/prime-numbers-java-example
http://www.java-examples.com/prime-numbers-java-example
http://howtodoinjava.com/2012/10/31/why-not-to-use-finalize-method-in-java/
http://howtodoinjava.com/2012/10/31/why-not-to-use-finalize-method-in-java/
http://howtodoinjava.com/2012/10/31/why-not-to-use-finalize-method-in-java/
http://stackoverflow.com/questions/6341203/java-xml-getattribute
http://stackoverflow.com/questions/6341203/java-xml-getattribute
http://stackoverflow.com/questions/6341203/java-xml-getattribute
http://javabynataraj.blogspot.in/2011/04/what-is-deserialization-in-java-write.html
http://javabynataraj.blogspot.in/2011/04/what-is-deserialization-in-java-write.html
http://javabynataraj.blogspot.in/2011/04/what-is-deserialization-in-java-write.html
http://javabynataraj.blogspot.in/2011/04/what-is-deserialization-in-java-write.html
http://stackoverflow.com/questions/5003939/dead-code-warning
http://stackoverflow.com/questions/5003939/dead-code-warning
http://stackoverflow.com/questions/5003939/dead-code-warning

DOSattack http://www.coderanch.com/t
/554166/sockets/java/DOS-
attack-server

8KB 128

Informationexp http://www.roseindia.net/jav
a/example/java/util/quintess
ential-logging-
program.shtml

2KB 31

Multipartfile http://www.tutorialspoint.co
m/servlets/servlets-file-
uploading.htm

3KB 30

Absolutepath http://www.mkyong.com/jav
a/how-to-read-file-in-java-
fileinputstream/

2KB 56

Sessionclient http://www.coderanch.com/t
/565447/Tomcat/HttpSessio
n-client-server

3KB 22

Postredirect http://www.coderanch.com/t
/598162/Servlets/java/confi
gure-sendRedirect

6KB 46

Sensitivecookie http://java-
demos.blogspot.in/2013/04/
cookies-in-servlets-with-
example.html

5KB 28

Filesystemcall http://www.java-
samples.com/showtutorial.p
hp?tutorialid=8

3KB 85

Average Value of ISM Calculated from these
Programs

77.8

The programs that contain higher value of Degree of Insecurity are said to be
more vulnerable and must be corrected. For example programs such as
splitxmlfile.java, average.java, arraydemo.java, DOSattack.java exceeds the
range of 100, hence they are said to be insecure. Splitxmlfile.java is said to be
more vulnerable due to the presence of improper input validation, incorrect
conversion between numeric types occurring multiple times. Average.java,
arraydemo.java contains dead code, de-serialization of un-trusted data
vulnerability multiple times and it contains maximum number of weaknesses
to help attackers to misuse them, DOSattack.java is also more vulnerable
because it contains Path traversal weakness, multipart file detection,
uncontrolled resource consumption problem, URL redirection problem,
sensitive cookie and manipulating file system call issues so when there is
presence of so many weaknesses in a single program then it gives a clear
picture that the program is too weak and it becomes easier for an attacker to
attack on resources or with URL redirection so as to redirect user to different
unexpected site and the attacker might misuse with user credentials and even
uploading any content files and many more weaknesses that can really affect
the development of software and make the software insecure.

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

84

Table 4: Degree of Insecurity Calculated in Programs written by Students

Program

Name
Size ISM

ClientA 13 KB 313

Router 30 KB 615

Server 36 KB 756

Dist 31 KB 525

Logger 19 KB 213

Arithmetic 32KB 659

Table 4 describes the experimental results on Java programs written by the
students [3][4] along with the Degree of Insecurity calculated in each of them.

Comparison of the Degree of Insecurity in the two classes reveal that the Java
programs written by students have a higher Degree of Insecurity than those
written by professional programmers and therefore are more prone to security
attacks. This was in line with our expectations.

7- CONCLUSION

Vulnerabilities in software are weaknesses caused by defects in design and
code and have to be removed to make it more secure. Detecting such
vulnerabilities manually is painstaking and it is necessary to have tools that
can help programmers to detect and correct these during development stage.

There are a number of tools available to detect the vulnerabilities present in
application programs written in various programming languages. But these
tools detect only few vulnerabilities which are very common and do not
calculate the Degree of Insecurity.

The tool developed by the authors and described in this paper detects
nineteen vulnerabilities in Java source code and also calculates the Degree of
Insecurity in the application. The effectiveness of the tool has been
demonstrated by applying it on two classes of programs: one by professionals
and the other by students and results were as per expectations.

Average Value of ISM
Calculated from these
Programs

513.5

SecCheck: A Tool for Detection of Vulnerabilities Priyadarshini et al

85

Table 1: Comparison with Available Vulnerability Detection Tools

Tool Developed by Features Languages Remarks

bugScout[27]

buguroo

Multiple security
failures, such as
deprecated
libraries errors,
vulnerable
functions,
sensitive
information within
the source code
comments, etc.

Java, C#, Visual
Basic, ASP, php

It is a
commercial
tool provided
on SaaS in
the cloud. It
does not
calculate
security
metrics.

Jtest[28]

Parasoft

Defects such as
memory leaks,
buffer issues,
security issues
and arithmetic
issues, plus SQL
injection, cross-
site scripting,
exposure of
sensitive data and
other potential
issues

 Java

It is a
commercial
tool Does not
find all
vulnerabilities.
Does not
calculate
security
metrics.

Checkmarx[29]

Checkmarx

Cover all known
OWASP and
SANS
vulnerabilities and
comply with PCI
and other
standards.
Includes a query
language that
enables infinite
customization and
detection
accuracy with
virtually zero false
positives.

Java, C#/.NET,
PHP, C, C++,
Visual Basic 6.0,
VB.NET, Flash,
APEX, Ruby,
JavaScript, ASP,
Android,
Objective C, Perl

 It is a
commercial
tool. Converts
all languages
code and flow
into a single,
common-
language
format stored
in a persistent
database.
Does. not
calculate
security
metrics

CodeSecure[30]

Armorize
Technologies

XSS, SQL
Injection,
Command
Injection, tainted

ASP.NET, C#,
PHP, Java, JSP,
VB.NET, others

It is a
commercial
tool. Does not
calculate
security
metrics.
Developed

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

86

http://buguroo.com/en/products/bugscout/
http://buguroo.com/en/
http://www.parasoft.com/jsp/products.jsp
http://www.parasoft.com/
http://www.checkmarx.com/
http://www.checkmarx.com/
http://www.armorize.com/codesecure
http://www.armorize.com/
http://www.armorize.com/

data flow, etc. only for web
application
security.
Performs data
flow and
control flow
analysis on
each line of
code.

Coverity[31]
SAVE™

Coverity

Flaws and
security
vulnerabilities -
reduces false
positives while
minimizing the
likelihood of false
negatives.

C, C++, Java, C#

It is a
commercial
tool. Does not
find all
vulnerabilities.
Does not
calculate
security
metrics.

FindBugs[32]
FindSecurityBugs

Bill Pugh and

David
Hovemeyer

Null pointer
deferences,
synchronization
errors,
vulnerabilities to
malicious code,
etc. It can be
used to analyse
any JVM
languages, more
security detectors
(Command
Injection, XPath
Injection,
SQL/HQL
Injection,
Cryptography
weakness and
more).

Java, Groovy,
Scala

Operates on
Java byte
code, rather
than source
code. Does
not calculate
security
metrics

Fluid[33]

Lockheed
Martin’s
Software

Technology
Initiative (STI)

"Analysis based
verification" for
attributes such as
race conditions,
thread policy, and
object access
with no false
negatives

Java

Checks for
concurrency
errors. Does
not calculate
security
metrics

HP
QAInspect[34]

Application
vulnerabilities

C#, Visual Basic,

Mimics real
hacking
techniques

SecCheck: A Tool for Detection of Vulnerabilities Priyadarshini et al

87

http://www.coverity.com/products/coverity-save.html
http://www.coverity.com/products/coverity-save.html
http://www.coverity.com/
http://findbugs.sourceforge.net/
http://h3xstream.github.com/find-sec-bugs/
http://en.wikipedia.org/wiki/List_of_JVM_languages
http://en.wikipedia.org/wiki/List_of_JVM_languages
http://www.fluid.cs.cmu.edu/
https://www.fortify.com/products/qa_inspect.html
https://www.fortify.com/products/qa_inspect.html

HP

JavaScript, VB
Script

and attacks,
enabling to
analyze web
applications
and services
for security
vulnerabilities.
Does not
calculate
security
metrics

Insight[35]

Klocwork

Buffer overflow,
un-validated user
input, SQL
injection, path
injection, file
injection, cross-
site scripting,
information
leakage, weak
encryption and
vulnerable coding
practices, as well
as quality,
reliability and
maintainability
issues.

C, C++, Java,
and C#

Analyses web
applications.
Does not
calculate
security
metrics

Jlint[36]

Konstantin
Knizhnik Bugs,

inconsistencies,
and
synchronization
problems

Java

Performs data
flow analysis
on the code
and builds the
lock graph to
check
vulnerabilities.
Does not
calculate
security
metrics.

LAPSE[37]

OWASP
Helps audit Java
J2EE applications
for common types
of security
vulnerabilities
found in Web
applications.

Java

Difficulty
arises when
applications
consisting of
thousands of
lines of code
or having a
complex
structure with
many Java

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

88

http://www.klocwork.com/products/insight/
http://www.klocwork.com/
http://sourceforge.net/projects/jlint/
https://www.owasp.org/index.php/Category:OWASP_LAPSE_Project

classes. Does
not calculate
security
metrics

PMD[38]

Questionable
constructs, dead
code, duplicate
code

Java

Does not
calculate
security
metrics. Does
not find all
vulnerabilities.

QA-J[39]

PRQA
programming

Research
A suite of static
analysis tools,
with over 1400
messages.
Detects a variety
of problems from
undefined
language features
to redundant or
unreachable
code.

Java

Deep,
accurate,
high-fidelity
parsing, and
incorporates a
sophisticated
solver-based
dataflow
engine to
identify
intricate
value-tracking
issues and
coding
vulnerabilities.
Does not
calculate
security
metrics.

Resource
Standard Metrics
(RSM)[40]

M Squared
Technologies

Scan for 50
readability or
portability
problems or
questionable
constructs, e.g.
different number
of "new" and
"delete" key
words or an
assignment
operator (=) in a
conditional (if).

C, C++, C#, and
Java

Measures
code quality
and metrics.
Does not
calculate
security
metrics.

Rational
AppScan Source
Edition[41]

IBM (formerly
Ounce Labs)

Coding errors,
security
vulnerabilities,
design flaws,

C, C++, Java,
JSP, ASP.NET,
VB.NET, C#

Does not
calculate
security
metrics. Tests

SecCheck: A Tool for Detection of Vulnerabilities Priyadarshini et al

89

http://pmd.sourceforge.net/
http://msquaredtechnologies.com/m2rsm/
http://msquaredtechnologies.com/m2rsm/
http://msquaredtechnologies.com/
http://msquaredtechnologies.com/
http://www.ibm.com/software/rational/products/appscan/source/
http://www.ibm.com/software/rational/products/appscan/source/
http://www.ibm.com/software/rational/products/appscan/source/
http://www.ibm.com/

policy violations
and offers
remediation

web
applications.
Does not find
all
vulnerabilities.

SCA[42] Fortify Software

Security
vulnerabilities,
tainted data flow,
etc. "more than
470 types of
software security
vulnerabilities"

ASP.NET, C,
C++, C# and
other .NET
languages,
COBOL, Java,
JavaScript/AJAX,
JSP, PHP,
PL/SQL, Python,
T-SQL, XMLand
others

Does not
calculate
security
metrics. Does
not find r all
vulnerabilities

Microsoft Office
Security
Assessment Tool
[43]

Microsoft

 Assess
weaknesses in
their current IT
security
environment,
create a
prioritized list of
issues, and help
provide specific
guidance to
minimize those
risks..

Does not
calculate
security
metrics.

Nessus[44]
Tenable
Network
Security

 Remote and local
(authenticated)
security checks,

Unix

Does not
check security
metrics. Does
not provide
the scanning
in the
programs
running in the
machines.
Checks
hardware
weaknesses.

Core Impact[45] IBM

SS Internet
Security
vulnerability
scanner

Does not
check security
metrics isn’t
cheap. It
sports a large,
regularly
updated
database of
professional

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

90

https://www.fortify.com/products/hpfssc/source-code-analyzer.html
http://www.fortify.com/
http://en.wikipedia.org/w/index.php?title=Tenable_Network_Security&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Tenable_Network_Security&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Tenable_Network_Security&action=edit&redlink=1

 ACKNOWLEDGEMENTS

The work reported in this paper has been done with the support of the
Department of Science and Technology, Government of Karnataka, India
under VGST Scheme.

The authors wish to acknowledge the assistance of S P Srinivas, Sowmya K B
and Nirja Parida of East Point College of Engineering and Technology,
Bangalore in preparing the manuscript.

 REFERENCES

[1] G. Mcgraw, Software Security: Building Security In, Addison Wesley, 2006.

[2] A. K.Talukder, M. Chaitanya. Architecting Secure Software Systems,
Auerbach Publications, 2009.

[3] R. Priyadarshini, A. Basu and S. Sushma, “SecCheck: A Tool to Detect
Vulnerabilities in Java Code,” International Conference on On-Demand
Computing, ICDOC Bangalore, Nov 15-16, 2012.

[4] N. Ghosh and A. Basu, “WebCheck: A Tool to Detect Weaknesses in Java
Web Applications,” International Conference on Information and
Communication Engineering ICICE Bangalore, June 28-29, 2013.

[5] A. Mammar, A. Cavalli, W. Jimenez, W. Mallauli, and E. M. deOca, “Using
testing techniques for vulnerability detection in C programs,” Proceedings of
the 23

rd
 IFIP WG 6.1 International Conference on Testing Software and

Systems, ICTSS’11, pp. 80-96, 2011.

exploits,

X-scan[46]

Security
Auditor’s
Research

Assistant[SARA]
tool

Detecting service
types, remote OS
type/version
detection, weak
user/password
pairs.

Does not
calculate
security
metrics.
Checks for
network
weakness
only

SecCheck: A Tool for Detection of Vulnerabilities Priyadarshini et al

91

[6] V. B. Livshits and M. S. Lam, “Finding Security Vulnerabilities in Java
Applications with Static Analysis,“ Proceedings of the 14th Conference on
USENIX Security Symposium, CA, pp.271-286, 2005.

[7] http://cwe.mitre.org

[8] Off by one error: http://cwe.mitre.org/data/definitions/193.html

[9] Uncontrolled Memory Allocation:

http://cwe.mitre.org/data/definitions/789.html

[10] Improper Input Validation: http://cwe.mitre.org/data/definitions/20.html

[11] Improper Check for unusual or exceptional conditions:

http://cwe.mitre.org/data/definitions/754.html

[12] Arithmetic Underflow:http://en.wikipedia.org/wiki/Arithmetic_underflow

http://javapapers.com/core-java/java-overflow-and- underflow/

[13] Dead Code: http://en.wikipedia.org/wiki/Dead_code

[14] Deserialization of Untrusted Data

http://cwe.mitre.org/data/definitions/502.html

[15] Incorrect Conversion between Numeric Types

http://cwe.mitre.org/data/definitions/681.html

[16] finalize() Method Declared Public:

http://cwe.mitre.org/data/definitions/583.html

[17] Improper Initialization: http://cwe.mitre.org/data/definitions/665

[18] Absolute Path Traversal:http://cwe.mitre.org/data/definitions/36.html

[19] Uncontrolled Resource Consumption(“Resource Exhaustion”):

http://cwe.mitre.org/data/definitions/400.html

[20] Unrestricted Upload of File with Dangerous

Type:http://cwe.mitre.org/data/definitions/434.html

[21] Manipulating Inputs to File System Calls:

http://capec.mitre.org/data/definitions/76.html

[22] URL Redirection to Untrusted Site(‘Open Redirect’):

http://cwe.mitre.org/data/definitions/601.html

[23] ClientSide Enforcement of ServerSide Security:

http://cwe.mitre.org/data/definitions/602.html

[24] Sensitive Cookie in HTTPS Session Without 'Secure' Attribute:

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

92

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/193.html
http://cwe.mitre.org/data/definitions/789.html
http://cwe.mitre.org/data/definitions/754.html
http://en.wikipedia.org/wiki/Arithmetic_underflow
http://en.wikipedia.org/wiki/Dead_code
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/681.html
http://cwe.mitre.org/data/definitions/583.html
http://cwe.mitre.org/data/definitions/665
http://cwe.mitre.org/data/definitions/36.html
http://cwe.mitre.org/data/definitions/400.html
http://cwe.mitre.org/data/definitions/434.html
http://capec.mitre.org/data/definitions/76.html
http://cwe.mitre.org/data/definitions/601.html
http://cwe.mitre.org/data/definitions/602.html

http://cwe.mitre.org/data/definitions/614.html

[25] Improper Neutralization of HTTP Headers for Scripting

Syntax:http://cwe.mitre.org/data/definitions/644.html

[26] Information Exposure through Log

Files:http://cwe.mitre.org/data/definitions/532.html

[27] https://www.buguroo.com/en/products/bugscout/

[28] http://www.parasoft.com/jsp/products/jtest.jsp

[29] http://www.checkmarx.com/

[30] http://www.armorize.com/codesecure/

[31] http://www.coverity.com/

[32] http://findbugs.sourceforge.net/

[33] http://fluid-software.com/

[34]https://download.spidynamics.com/products/qainspect/hp/qainspectqcrele

asenotes.txt

[35] http://www.klocwork.com/products/insight/

[36] http://jlint.sourceforge.net/

[37] https://www.owasp.org/index.php/OWASP_LAPSE_Project

[38] http://pmd.sourceforge.net/

[39] http://www.programmingresearch.com/

[40] http://msquaredtechnologies.com/

[41] http://www-03.ibm.com/software/products/en/appscan-source/

[42]http://www8.hp.com/us/en/software-solutions/application-

security/index.html

[43] http://www.microsoft.com/en-in/download/details.aspx?id=12273

[44] http://www.tenable.com/products/nessus

[45] http://www.coresecurity.com/core-impact-pro

[46] http://www.x-scan.eu/

SecCheck: A Tool for Detection of Vulnerabilities Priyadarshini et al

93

http://cwe.mitre.org/data/definitions/614.html
http://cwe.mitre.org/data/definitions/644.html
http://cwe.mitre.org/data/definitions/532.html
https://www.buguroo.com/en/products/bugscout/
http://www.parasoft.com/jsp/products/jtest.jsp
http://www.checkmarx.com/
http://www.armorize.com/codesecure/
http://www.coverity.com/
http://findbugs.sourceforge.net/
http://fluid-software.com/
https://download.spidynamics.com/products/
http://www.klocwork.com/products/insight/
http://jlint.sourceforge.net/
https://www.owasp.org/index.php/
http://pmd.sourceforge.net/
http://www.programmingresearch.com/
http://msquaredtechnologies.com/
http://www-03.ibm.com/software/products/en/appscan-source/
http://www8.hp.com/us/en/software-solutions/application-security/index.html
http://www8.hp.com/us/en/software-solutions/application-security/index.html
http://www.microsoft.com/en-in/download/details.aspx?id=12273
http://www.tenable.com/products/nessus
http://www.coresecurity.com/core-impact-pro
http://www.x-scan.eu/

