

Comprehensive Measurement Analysis for
Software Productivity

Samer I. Mohamed

Department of electrical communication engineering, faculty of engineering,
October University of Modern Science and Arts MSA (Egypt)

E-mail: saibrahim@msa.eun.eg

ABSTRACT

Software development productivity is one of the major and vital aspects that
impacts software industry and time to market of many software products.
Although many studies have been conducted to improve the productivity
measurements within software engineering research domain, productivity is
still an issue in current software development industry because not all
impacting factors and their relationships are known. This paper sheds a light
on some of these factors and assesses their impacts as seen by random
sample of industrial software SMEs. It also elaborates the main best practices
that help in improve the software productivity based on real industrial projects.
The resulting list of factors and best practices can be utilized to guide further
productivity analysis and be taken as basis for building improved and more
optimized productivity models. Paper also identifies some of the productivity
measurements challenges and recommends set of best practices that can be
utilized as basis for productivity measurements and estimation models.

Keywords: Software Productivity, Volatility, Technical Factors, Non-technical

Factors, Best Practices, SMEs, SMART Requirements, Software Metric.

1- INTRODUCTION

Software development industry nowadays becomes one of the main industries
that contribute on the evolution of the computer-based systems. Many
organizations currently investing huge amount of money to improve their
productivity and time to market to gain larger market share and increase their
operational margin. Productivity in software development has been an
important research area for several decades now where successful
organizations focus their R&D to improve.

There are many different measures for software productivity within the
literature. The most common and traditional approaches are the lines-of-code
(LOC) and function points (FP), i.e., the amount of LOC or FP produced per
hour by a developer [1]. Based on this, there is a large amount of studies on
various aspects of productivity. The two mentioned measures and several
more dimensions have been analyzed and detailed within the literature.

Comprehensive Measurement Analysis Mohamed

3

Our contribution through this paper, is the introduction of a balanced and
mixed approach for both the industrial and theoretical perspectives of those
factors that impact the software productivity. Although the software
engineering literature in that area often has a strong emphasis on technical
factors such as the software size or the product complexity. However, there
are other non-technical factors that impact software productivity as has been
proved by Brodbeck [2] who has shown that more than a third of the time a
typical software developer is not concerned with technical work.

A productivity measure commonly is understood as a ratio of outputs
produced to resources consumed. Experience shows that no single
productivity measure applies in all situations for all purposes. Instead,
organizations must craft productivity measures appropriate to their processes
and information needs. In addition to the wide range of possible inputs and
outputs to be measured, the interpretation of the resulting productivity
measures may be affected by other factors such as requirements changes
and quality at delivery.

There are different standards for productivity measurements like IEEE 1045
standard which describes the calculation of productivity in terms of effort
combined with counts of lines of code or function points. Besides ISO/IEC
15939 standard which is the basis for the Measurement and Analysis Process
Area of the Capability Maturity Model – Integration.

Challenges around the productivity measurements arise because productivity
may vary across the organization itself due to changes and dynamics within
project itself with respect to other running projects. Besides, factors that
impacting different projects are themselves different innatures.

The paper is organized as follows: section II gives a background for the early
studies done on software productivity as a concept; section III provides
overview of the productivity metric design best practices and highlight
productivity measurement challenges; section IV introduces the case study
targeted by this paper; where case study description, details, results, and
recommendations are detailed; section V is the conclusion of this study.

2- BACKGROUND

Software development is a great expense for most organizations, thus,
software development productivity can have a significant impact on the
organization’s ability to compete and survive. Currently, most software
development organizations are not optimized. There is an increasing demand
for software especially for embedded systems. However, without improved
efficiency, it will be difficult to take advantage of these opportunities in a cost-
effective manner.

Tools will not be the only facility to succeed; but a need for a process that

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

4

ensures quality software can be produced consistently and efficiently has an
important effect. Like the various automobile manufacturers, different
development organizations today typically have access to roughly the same
production tools and technologies. The organizations that have a process for
leveraging them most successfully are the ones with the highest productivity
and the lowest production costs and the best one to compete.

There are extensive researches in the measurement of the development
productivity. Humphrey and Singpurwalla [3] use the statistical techniques of
time series analysis to predict the productivity of software development with
reasonable accuracy. Blackburn et al. [4] imparts a global survey of software
developers on improving speed and productivity of software development. The
most famous model that involves productivity is COCOMO by Boehm [5], [6].
It is a cost-estimation model in which the productivity of the developers
obviously plays a decisive role. Lakhanpal [6] concentrated on characteristics
of groups and their influence on productivity. Brodbeck describes in [8] that in
a survey, the projects with a higher communication effort also were more
successful.

Even the intensity of internal communication is positively correlated with
project success. This is in contrast to common software engineering belief that
high communication effort hampers productivity. Wohlin and Ahlgren have
described factors and their impact on time to market in [9]. They use 10
different factors in their study, mostly factors that are covered by the different
publications. They also include product complexity, methods, tools and
requirements stability that could be considered as technical factors.

Blackburn, Scudder, and VanWassenhove [10] studied the factors and
methods that improved productivity in Western European companies. They
found project duration and team size to be significant. Chatzoglou and
Macaulay [11] interviewed participants of over a hundred software projects
about several factors and their influence on productivity. They found that
experience, knowledge and persistence of the team members is considered
important. Also the motivation of the users and their communication with the
rest of the team play a role. Finally, the available resources, tools and
techniques used and the management style are important factors

These studies focus mainly on the measurement of the productivity, there are
unfortunately very few investigations on the elements that influence the
productivity. While the basic model for productivity measurement based on
process that converts inputs into outputs consuming resources to do so. The
input may be the requirements or cost invested for the software project and
the product output may be another work product like documentation or value
gain from the software product.

Comprehensive Measurement Analysis Mohamed

5

3- PRODUCTIVITY METRIC

3-1 METRIC DESIGN CONSIDERATIONS

Designer of any productivity measure should consider the following items
through defining a precise productivity metrics:

 Scope of resources – which resources get counted?

 Scope of inputs (Efforts) – Which input efforts get counted?

 Scope of outputs (product) – which products get counted?

In the previous discussion we discussed couple of the basic sizing measures
for the productivity output or numerator which are Function Point (FP) or
functional input size measure and Source Line Of Code (SLOC) or physical
output size measure. While there are factors impacting the efforts required to
produce a given quantity of software (size) like smart technologies, code
generator tools, and other non-technical aspects. Consequently the effects of
these technologies must be considered in determining productivity either by
weighting the size measures or defining multiple productivity measures for
different development scenarios. More than one size measure may be needed
to capture all of the information needed about the quantity of product
delivered. That is software produced by different methods may need to be
counted separately. Key through designing a metric to measure or judge
about software productivity is to understand what the metric will size or
measure and if the data required for that purpose is available and can be
easily collected within the software organization. Each metric matters to
specific team or someone based on value gained from the metric itself like
governance or compliance requirements. For example size (SLOC, FP) and
speed (Velocity, story points) metrics are important to project managers
through planning, while quality and reliability metrics are important to
organization top management and customers to maintain margin and
revenue. It’s important to utilize the productivity metric through comparisons
either between teams or over different period of times for the same team to
measure the improvements gained from some planned actions.

The software engineering industry is domain where stakeholders, clients and
the end users influence inputs and outputs, which produces a contribution to
both the internal and external efficiency. Hence, a totally different approach to
productivity has to be undertaken in order to obtain a global measure that
establishes how well a software engineering organization uses resources to
create outputs with acceptable perceived quality and customer value [28].
Thus, inputs and outputs measurement should consider both quantity and
quality. This importance is reflected in the premises that Grönroos and Ojasalo
established: “The better the perceived quality that is produced using a given
amount of inputs (service provider’s inputs and customers’ inputs), the better
the external efficiency is, resulting in improved service productivity” and “The

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

6

more efficiently the service organization uses its own resources as input into
the processes and the better the organization can educate and guide
customers to give process-supporting inputs to produce a given amount of
output, the better the internal [12].

3-2 METRIC DESIGN CHALLENGES

The challenge behind productivity metric is the multiple factors that impact the
productivity outputs and inputs. One of the other main challenges with
productivity metric design is the abstract level where the designed metric is
applicable under different conditions and in different originations. This proved
to be very challengeable especially when each organization has its own
structure, environment and process aspects that are in total impact their
productivity measurements. Organization maturity in measuring and collecting
the metric data is one of the other factors that controls how the measurement
process will be successful. Since software product development life cycle go
through different phases starting from requirements elicitations towards
delivery, you have to use different metrics to measure the productivity in each
phase which adds more difficulty in tracking and data collections. One of the
main and important challenges that highlighted within this paper is the impact
of non-technical factors on the productivity measurements. Software
engineering activities are capital intense, so the human factor has to be
analyzed in any management practice order to obtain a more adequate result.
In the context of productivity measurement, it is well accepted that factors
related to personnel such as (technical, non-technical) capabilities and skills,
and (programming language, project, process…) experience influence directly
on productivity results. In addition to these factors, and considering the lack of
literature related to this area, its recommended that other factors such as
motivation, performance management practices, compensation and rewards
systems, organizational climate, and happiness could influence productivity
results; but it is not clear how they influence and how to introduce them in
productivity measurement. Thus, a wide range of research possibilities
presents through the combination of knowledge of human resources
management and productivity management, which could lead to a transfer of
cognition for a common research purpose [13]. Challenges related to
designing metric for code reusability still under research on how it can be
linked to productivity measurement. Besides the challenges related to
unresolved links between code reuse and some other tasks in the software
engineering cycle like requirements engineering and design phases make it
hard to select Commercial of the Shelf (COTS). Another challenge is the
design of metric that could be applied in both new development and
maintenance projects, considering the differences.

3-3 PRODUCTIVITY METRIC SAMPLES

Once the inputs, outputs, and factors influencing productivity measurement
are defined, a formulation of the measure can be established. Hence, specific

Comprehensive Measurement Analysis Mohamed

7

metric can be defined and each organization may use one or several of them
for measuring its productivity. In order to sum up the state of the art about
inputs, outputs and metrics, the most used in each category are presented in
Table 1. They are ordered according to the measurement difficulty, from easier
to harder. The degree of representation scale of the production process itself
is also represented: lower difficulty measures are less representative of the
production process than harder measures.

Table 1. Samples for productivity inputs, outputs and metrics

Inputs Outputs Metric (P=Productivity)

Wages Sales P = Sales / Wages

Effort = Men Hours TLOC = SLOC + DLOC P = TLOC / Effort

Effort = Men Hours Function or Feature
Points (includes all the
variations of the original
ideal)

P = FP / Effort

Effort = Man hours story point P = #storypoint/Efforts
(Agile development)

Multiple inputs Multiple inputs Data Envelopment Anal-
ysis (DEA)(i.e.
Mahmood et al., 1996),
capable of being used
with any input-output
measurement

Multiple inputs Multiple inputs Multifactor metrics (i.e.
Kitchenham & Mendes,
2004), capable of being
used with any input-
output measurement

Multiple inputs Multiple inputs General Linear Model
metrics, capable of being
used with any input-
output measurement

4- CASE STUDY

4-1 CASE DESCRIPTION

The Case is based on an industrial survey performed among group of 50
software engineers and Subject Matter experts (SMEs) from different industrial
domains within the software development field. The selected sample of SMEs
takes into consideration different diversity aspects within technology, industrial
domain, SME job level, application domain, project types and software
development models. This is basically to ensure unbiased outcomes and
normal weight distribution of the different factors that impact software
productivity within software development spectrum.

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

8

4-2 CASE DESCRIPTION

The survey presented in this case study has different types of questions varies
between multiple choice questions MCQ and open type questions where
interviewee has to put his own answer. Although 95% of the questions are
MCQ but the remaining 5% were needed to assess interviewee judgments on
some productivity factors and best practices.

The survey main objectives are basically:

 Gather basic information about interviewee and projects types.

 Assess time wasted in non-productive tasks compared to other
productive ones.

 Evaluate those factors that impact the total productivity from
interviewee perspective.

 Identify those best practices to improve the software productivity
either adopted or proposed by the interviewee.

 Measure the impact of external and non-technical factors on
productivity.

The design of the survey was done to assess ratio and impact of different
factors impacting the productivity either technical or non-technical aspects.

Technical aspects like requirements volatility, tooling, technical training, rework
due to poor quality and bug fixes, innovation support, project duration,
application complexity, technical experience, status updates/admin impact,
and modern programming practices have been assessed.

Non-technical aspects like appreciation and motivation, team cohesion,
software size relative to application size (diseconomy of scale),
turnover/attrition, work location, environmental effect like noise/lighting effect,
defensive management, team size and roles and responsibilities clarity has
been assessed and compared against technical aspects.

Each factor impact on productivity from the above listed ones has been
assessed in range from low level to very high level.

Survey also has identified the best practices to improve the software
productivity and the adoption methodology ranging from unknown level to
standard level as follows:

 Desks away from loud employees like managers, support, sales that
are always on the phone.

 Deal with SMART requirements.

 Improve estimation accuracy.

Comprehensive Measurement Analysis Mohamed

9

 Use short task schedule.

 Being part of small and well organized project team.

 Use prioritized task list.

 Less context switching between multiple projects, or because of
changing specs.

 Make sure to allocate time for Refactoring and optimization before QA
gets to it.

 Code reviews.

 Reusability.

 Technical training.

 Pairing between developers through development.

 Adopt minimal constrains validation.

 Improve communication between Business Side and developers.

 Eliminate scope creep.

 Co-operative work environment.

 Have a system for distributing tasks.

 Increasing code knowledge.

 Prevents customer-architect misunderstandings by supporting agile

development processes with prototyping, short iterations, and other

practices that promote early and frequent customer interaction.

 Prevents architect-developer misunderstandings by enforcing policies

such as requiring that a test case be written for every use case, forc-

ing developers to think about each requirement from different per-

spectives.

4-3 CASE RESULTS

In this section we will show the outcomes from the productivity survey and
how these outcomes related to previous analytical studies in this field [14].

These outcomes will be classified into two main categories:

I) Impact of different factors on software development productivity either
technical or non-technical aspects.

II) Best practices adopted by developers either related to technical or
process/project-related aspects.

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

10

Table 2 shows the impact of technical factors on software productivity. Each
factor range between ‘Low’ and ‘High’ through ‘Average’ values.

Table 2. Impact of technical aspects on software productivity

Factor/criteria
Low
(%)

Average
(%)

High (%)

Volatility 0 27 73

Tooling/training 13 33 54

Rework 40 33 27

Status updates 27 40 33

Innovation 27 20 53

Project duration 13 60 27

App. complexity 13 47 40

Technical experience 7 20 73

Modern programming
practices

0 13 87

Data of Table 2 is illustrated graphically in Figure 1.

Figure 1. Technical factors effect on software development productivity

Table 3 shows the impact of non-technical factors on software productivity.
Each factor range between ‘Low’ and ‘High’ through ‘Average’ values.

Comprehensive Measurement Analysis Mohamed

11

Table 3. Impact of non-technical aspects on software productivity

Factor/criteria
Low
(%)

Average
(%)

High (%)

Appreciation 0 20 80

Team cohesion 0 13 87

Software size 0 60 40

Turnover/attrition 0 20 80

Work location 7 7 86

Environmental effect 20 27 53

Defensive management 0 13 87

Team size 20 67 13

Roles and Responsibilities clarity 0 0 100

The data from Table 3 is also presented graphically in Figure 2.

Figure 2. Non-Technical factors effect on software development productivity

Best practices adopted by software development industry have impact on the
productivity as provided by the results/outcomes from the survey. These
results are classified into main classes. The first class related to technical best
practices while the second one is related to the project/process best practices.

Table 4 shows the impact of adopting different types of technical best
practices on software productivity. Each practice range as detailed earlier

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

12

between ‘Not available’ and, ‘Standard’ where practice is used as standard
use, ‘Training needed’ where practice is used but need more
development/improvement to be materialized, ‘Has major value’ where the
practice has practical value on software productivity.

 Table 4. Technical best practices impact on software productivity

Best practice
Not

available
(%)

Stand-
ard (%)

Training
needed

(%)

Major value
(%)

SMART requirements 60 27 13 0

Use Refactoring 67 33 0 0

Code reusability 13 33 27 27

Code reviews 13 80 7 0

Increase code
knowledge

13 87
0

0

Agile development 33 53 7 7

Test case per use case 53 47 0 0

Technical training 0 7 27 66

Pairing 0 53 20 27

Have Business experi-
ence

0 20
40

40

Minimal constrains vali-
dation

0 13
67

20

The data from Table 4 is illustrated graphically in Figure 3.

Figure 3. Technical best practices effect on software development productivity

Comprehensive Measurement Analysis Mohamed

13

Table 5 shows the impact of process/project best practices on software
productivity. Each practice range as detailed earlier between ‘Not available’
and ‘Standard’.

Table 5. Impact of process/project practices on software productivity

The data from Table 5 is also presented graphically in Figure 4.

Figure 4. Process/project practices effect on software development productivity

Best practice
Not availa-

ble (%)
Standard

(%)
Training

needed (%)
Major

value (%)

Desks away from
noise

73 27
0

0

Less project
switching

13 87
0

0

Communication
improvement

40 33
27

0

Scope creep elim-
ination

0 100
0

0

Improve estimation
accuracy

13 73
13

0

Use task distribu-
tion system

33 67
0

0

Use prioritized
task list

13 87
0

0

Co-operative envi-
ronment

0 53
20

27

Small project team 0 60 20 20

Short task sched-
ule

0 33
33

34

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

14

4-4 CASE RESULTS ANALYSIS

By analyzing the results of this case study/survey, we conclude the following
points as follows [15]:

With respect to technical factors, here are the analytical outcomes:

 Requirements volatility has major negative impact on productivity es-
pecially through the system design and development.

 Using state of the art tooling on different process, project, technical or
technological levels will highly affect positively the software productivi-
ty through automation.

 Technical training is vital for productivity improvement and has high
impact to improve the productivity.

 Rework due to poor quality or bug fixes impact productivity negatively
but with lower weight/impact.

 Spending much more time on doing status updates/or admin work im-
pacts productively negatively with average weight.

 Innovation support from the upper management has high positive im-
pact on improving the software productivity.

 Project duration has average impact on the software productivity if it’s
within allowable limits (1 to 2 years). Productivity for those project with
duration more than 2 years decay with time as developer’s interest
and motivation reach a saturation levels.

 Application complexity is directly correlated with the software produc-
tivity, but most of the interviewees see this has average impact only
because the impact will be high at project start then decay with learn-
ing curve improvement along with project lifetime.

 Having business and technical experience with the application do-
main/field will help indeed to improve the development productivity
and increasing code knowledge.

 Adopting modern programming methodologies have very high positive
impact on improving software productivity [16].

With respect to non-technical factors, here are the analytical outcomes [17]:

 Appreciation and saying THANK YOU has the magical impact on the
developer’s spirit and motivation level, the thing that improves the
software productivity [18].

 Team cohesion and healthy work environment have very high positive
impact on software development productivity.

 Software size has neutral impact on the software productivity espe-
cially with adopting the latest state of the art methodologies and mod-
ern programming practices and tooling.

Comprehensive Measurement Analysis Mohamed

15

 Turnover/attrition has high negative impact on the software productivi-
ty because it’s directly correlated to the productivity of the team in
general and developer’s spirit in particular.

 Having work location nearby home has a major impact on the devel-
oper productivity, the nearer the work location the more productivity
outcomes and vice versa because of time/efforts waste due to lengthy
transportation.

 Work environment conditions (Noise, lighting, seating, fresh air, oth-
ers) have average impact on the productivity.

 Relationship between management and employees has high impact
on the employee productivity, defensive management is negatively
impacting resultant productivity and vice versa for supportive man-
agement.

 Working in a team or small groups indeed has major impact on
productivity as explained in the team cohesion factor, but the team
size also has an average impact on the productivity depending on the
team size itself. If the team size up to five, then healthy communica-
tion and controllable/manageable deliverables can be maintained. In-
creasing the team above five will drastically impact communication in
between developers and accordingly the resultant software productivi-
ty [19].

 Having clear roles and responsibilities for all stakeholders within the
project will maintain healthy communication and clarify the boundaries
between interacting roles, the thing that minimize the root cause for
any conflicts or major escalations. This will definitely will improve the
net productivity

With respect to technical best practices, here are the analytical outcomes [20]:

 Dealing with SMART requirements through the full development life
cycle starting from elicitations towards testing through design and de-
velopment has vital role to ensure a match between what is requested
by the client and what is implemented by the development team. Alt-
hough most of the interviewees see that adopting this practice is not
available in many projects due to variations in maturity levels of the
different stakeholders, but still acknowledge its vital value [21].

 Code refactoring/reusability is one of the other important aspects in
modern programming practices to best reuse/re-structure the exiting
code core without changing the external interface with the integrated
systems. Survey shows that this practice has major value on improv-
ing the system performance/maintainability but not available for new
development projects where time constrains exists [15].

 Code reviews is one of the important aspects in software development
and adopted as standard by most of the interviewees through pairing
approach. This ensures better quality and early bug detection which

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

16

improves the rework cost and enhance net productivity and accord-
ingly the time to market [22].

 Agile development is one of the modern techniques for software de-
velopment that adapts with the current market demand dynamics and
fulfill the increase demand on new products with minimum time to
market especially for mobile and small scale products. This practice is
used as standard between most of the interviewees currently to adapt
with market trends [15].

 Testing is one of the main components in the development life cycle.
Incorporating the testing early in the design phase or even in the elici-
tation phase is very important to ensure every developed compo-
nent/use case has its own test case. Adopting this as standard will
lead to better quality, less rework costs, high productivity.

 Technical training and ongoing courses that adapt with the latest state
of the art technologies is of a great need between most of the inter-
viewees because it keeps them with the technological rapid advances
and keeps the momentum for improving the business and technical
experience.

With respect to process/project best practices, here are the analytical
outcomes [21]

 Controlling the noise level in most of the organizations is very hard
although it is important to facilitate a noise controlled climate for the
software engineers. Most organizations currently balance between in-
creasing number of meeting rooms versus the open space work loca-
tions depending on the development approach (ex. Agile development
requires special arrangement for seating). Most of the interviewees
see that 10-20% of their time almost wasted due to high noise level
within the work place.

 Project management has an important role to facilitate structured and
well organized climate for the development team to deliver starting
from requirements specification towards project delivery, and to iso-
late any road blocks or management issues that waste their time.
Switching between projects is mixed blessing as seen by most of the
market leaders and management where it motivates the engineers
while impacting the net productivity because of additional overhead to
gain the knowhow and learning curve.

 Communication consumes basically considerable amount of anyone
time, while it takes around 90% from the project managers, it also
consumes between 10-30% of developer bandwidth. Thus improving
the way of communication both internally between team members and
externally with the project stakeholders has vital role and directly cor-
related with the team productivity in general and software engineer in
specific [23].

Comprehensive Measurement Analysis Mohamed

17

 Scope creep is one of the aspects that lead to project failures and cli-
ent dissatisfaction. Thus eliminating the scope creep is one of the
standards adopted by many organizations to ensure project success-
ful delivery.

 Improving the process and using more automation is vital to minimize
the unnecessary overhead and admin work especially this is related
to estimation process and other progress/reporting tracking tools. Alt-
hough it’s important for the PM to track the project progress and pri-
oritize the task list for the team, S/he needs to control the additional
overhead that impacts productivity via tooling and improved process.

 Working in a team is much better compared with working individually
if it’s performed within controllable ranges. Groups of 3 to 5 engineers
is the optimum within software development teams from communica-
tion, cooperation, controllability, and delivery perspectives [24].

With respect to %time wasted in non-productive tasks relative to other
productive ones, here are the analytical outcomes

 Meeting/talks (Technical) consumes around 20-30%.

 Presentations (Business related) consumes 5%.

 Project management/organization consumes 5%.

 Application development consumes 50%

 Others (ex. Coffee, Lunch) consumes 10%

 Most of S/W engineers consumes around 75% of their annual leaves.

Only 25% of the S/W engineers spend overtime hours outside of their normal
working hours.

4-5 CASE RECOMMENDATIONS/PROPOSED ACTIONS

From the analytical outcomes detailed in earlier sections, we come up with list
of recommendations and actions to better improve the software development
productivity for any software development organization in general and
software engineer in particular [25].

 Minimize the requirements volatility via adopting proper
change/release management process, proper requirements manage-
ment tools and modern/agile development methodology.

 Increase automation and tooling that eliminate manual and unneces-
sary overhead. Open source tools spread over the web have vital val-
ue and provide quick solutions for many problems with min/no costs.

 Organizations need to invest in their teams via technical training, R&D
support, and innovation funds.

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

18

 Healthy relationship between the management and employ-
ees/engineers is the quick win for improving the net outcomes from
the factory. This can be expressed in many ways simply via THANK
YOU.

 Facilitate nearby location to home with multiple sites and WFH (Work
From Home) facility will help in first minimize transportation
time/efforts and improve the productivity.

 Organizations need to balance between the work from office and
WFH days to maintain healthy communication and minimize the
wasted times/efforts.

 Clear R&R is vital for the whole deliverables of any organization in
general and software engineers in specific, where boundaries and in-
terface with external world identified. This will enable the engineer to
understand clearly what to do and what to avoid lead to better out-
comes and minimal issues/escalations.

 Using modern programing practices like code refactoring/reusability,
reviews, SMART requirements, agile development, pairing, and mini-
mal constrains validation are important form the technical perspective
to improve the quality, controllability and productivity.

 Adopting better process and project management policies like elimi-
nate scope creep, facilitate cooperative environment, short task
schedule, small project teams, prioritized list of tasks, distribution task
tools, and desk away from noise sources will help in minimize the
overhead and eliminate any sources of distractions.

 Designing productivity metric should be in sync with the organization
structure and objectives. Where each metric/s should be associated
with specific goal to be measured against regularly to track the pro-
gress and achievement of each team/project.

 Having concrete and well-established historical data system is vital for
building productivity models based on correlations and analytics with
the previous gathered data. This will help not only in improving the
productivity measurements but also fine turning the model itself to
better predict the growth and throughput improvement trends. This is
directly linked with the organization profit and financial growth targets,
where each organization in current harsh market conditions do what-
ever it takes to survive and gain more market share.

 Since software development lifecycle constitute of multiple phases,
it’s recommended as per the case study results to design the produc-
tivity metric for each phase to effectively measure the productivity lev-
el of each phase separately because of the different natures of in-
puts/outputs of each phase. For example number of SLOC is output
from development phase where number of use case is output from
the design phase, where both outputs can’t be measured together.

Comprehensive Measurement Analysis Mohamed

19

 Case study results proved the impact of the non-technical as-
pects/factors that affect the productivity measurements. This needs to
be weighted/discounted from the effective total productivity based on
productivity models designed as described above. While orgzniations
need to take corrective actions to maximize the effective developers
utilizations to improve the throughput towards their clients.

 Code reusability is one of the current important factors which is very
common these days and contribute in improving organizations
productivity figures if correctly utilized to satisfy the new requirements.

 Software manufacture mode is also one of the important factors that
impact the productivity measurement. For example defect-fixing
based project type will differ from the green-field project type where
software product is developed from scratch. Designing the productivi-
ty measurement should consider the project type factor as well.

5- CONCLUSIONS

In software development literature, productivity is a complex concept that
needs to be tackled depending on the software project factors. There are
technical and non-technical factors which has a considerable effect on the
software productivity. This paper sheds a light on the main factors both
technical and non-technical that impact software productivity. It also explores
the different best practices adopted by software engineers and shows its effect
as seen by the industrial software engineers in different domains. List of
recommendations and corrective actions has been provided as way for
continual improvement. Finally, software productivity measurement is a
learning activity and therefore, historical information related to factors and
measures is required. Hence, in order to learn and keep improving software
engineering processes, organizations may continuously record and
accumulate diverse metrics of their project. However, establishing this record
process is not enough; organizations should achieve a balance in the
investment of recording the required data and its future in order to accomplish
improved goals. In this direction, there have been some national and
international research organizations responsible of the creation of specific
projects for establishing data banks of productivity measures along with many
measurement factors, but generally these projects have ended fading away.
Therefore, the creation and promotion of new data banks, mainly international,
will enable a solid start point to further research in this important area.

ACKNOWLEDGMENT

The authors wish to thank HP organization for supporting this research study
through survey sessions with software development team in different
technological domains and industrial fields.

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

20

REFERENCES

[1] A. J. Albrecht. Measuring application development productivity In Proc.
Joint SHARE/GUIDE/IBM Application Development Symposium, pp. 83–
92, 1979.

[2] F. C. Brodbeck and M. Frese, editors. Produktivit¨at und Qualit¨at in Soft-
ware-Projekten. R. Oldenbourg Verlag, 1994.

[3] W. S. Humphrey and N. D. Singpurwalla, N.D. 1991. “Predicting (individu-
al) software productivity,” IEEE Trans. Software Engineering, vol. 17, pp.

196 – 207, Feb.1991.

[4] J. D. Blackburn, G. D. Scudder, and L. N. Van Wassenhove. Improving
speed and productivity of software development: A global survey of soft-
ware developers. IEEE Transactions on Software, 1996.

[5] B. W. Boehm and P. N. Papaccio. Understanding and controlling software
costs. IEEE Trans. Softw. Eng., 14(10), pp. 1462–1477, 1988.

[6] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K Clark, E. Horowitz,
R. Madachy, D. Reifer, and B. Steece Software Cost Estimation with
COCOMO II. Prentice-Hall, 2000.

[7] B. Lakhanpal. Understanding the factors influencing the performance of
software development groups: An exploratory group-level analysis. In-
form. Software Tech., 35(8), pp. 468–473, 1993.

[8] F. C. Brodbeck. Software-Entwicklung: Ein T¨atigkeitsspektrum mit
vielf¨altigen Kommunikationsund Lernanforderungen. In Brodbeck and
Frese, pp. 13–34.

[9] C. Wohlin and M. Ahlgren. Soft factors and their impact on time to market.
Software Qual. J., 4(3), pp.189–205, 1995.

[10] K. Maxwell, L. VanWassenhove, and S. Dutta. Software development
productivity of European space, military and industrial applications. IEEE
Trans. Softw. Eng., 22(10), pp. 706–718, 1996.

[11] P. D. Chatzoglou and L. A. Macaulay. The importance of human factors in
planning the requirements capture stage of a project. Int. J. Proj. Manag.,
15(1), pp. 39–53, 1997.

[12] Grönroos, C., & Ojasalo, K., Service productivity: Towards a
conceptualization of the transformation of inputs into economic results in
services. Journal of Business Research, 57(4), pp. 414-423, 2004.

[13] Koskinen, K. U., Boundary brokering as a promoting factor in competence
sharing in a project work context. International Journal of Project
Organisation and Management, 1(1), pp. 119-132, 2008.

[14] J. D. Blackburn, G. D. Scudder, and L. N. Van Wassenhove Improving
speed and productivity of software development: A global survey of soft-
ware developers. IEEE Transactions on Software Engineering, 22(12),
1996.

Comprehensive Measurement Analysis Mohamed

21

[15] C. Jones. Software Assessments, Benchmarks, and Best Practices. Addi-
son-Wesley Information Technology Series. Addison-Wesley, 2000.

[16] D. Port and M. McArthur. A study of productivity and efficiency for object-
oriented methods and languages. In Proc. Sixth Asia-Pacific Software
Engineering Conference (APSEC ’99), IEEE Computer Society, pp. 128–
135, 1999.

[17] C. Wohlin and M. Ahlgren. Soft factors and their impact on time to market.
Software Qual. J., 4(3), pp.189–205, 1995.

[18] R. Berntsson-Svensson and A. Aurum. Successful software project and
products: An empirical investigation. In Proc. 2006 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering (ISESE ’06), ACM
Press, pp. 144–153, 2006.

[19] T. K. Abdel-Hamid. The dynamics of software project staffing: A system
dynamics based simulation approach. IEEE Transactions on Software
Engineering, 15(2), pp.109–119, 1989.

[20] R. P. Cerveny and D. A. Joseph. A study of the effects of three commonly
used software engineering strategies on productivity software enhance-
ment Information & Management, 14(5), pp.243–251, 1988.

[21] G. R. Finnie, G. E. Wittig, and D. I. Petkov. Prioritizing software develop-
ment productivity factors using the analytic hierarchy process. Journal of
Systems and Software, 22(2), pp. 129–139, 1993.

[22] Z. Jiang, P. Naud´e, and C. Comstock. An investigation on the variation of
software development productivity. International Journal of Computer and
Information Science and Engineering, 1(2), pp. 72–81, 2007.

[23] S. Alper, D. Tjosvold, and K. S. Law. Conflict management, efficacy, and
performance in organizational teams. Personnel Psychology, 53, pp. 625–
642, 2000.

[24] R. H. Rasch. An investigation of factors that impact behavioral outcomes
of software engineers. In Proc. SIGCPR. ACM Press, 1991.

[25] J. Turcotte and L. W. Rennison. The link between technology use, human
capital, productivity and wages: Firm-level evidence. International Produc-
tivity Monitor, 9, pp. 25–36, 2004.

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

22

