

The Adapted V-Model: A Practical Approach
to Agile Testing

Yasser Ghanim

Software Engineering Competence Center (Egypt)
E-mail: yghanim@itida.gov.eg

ABSTRACT

Agile methods largely remove the distinction between phases and roles with no
predefined order of activities. Some agile approaches such as Test-Driven De-
velopment (TDD) switch the traditional order of coding and testing and largely
remove the boundary between the two implying that testing is becoming more a
technical responsibility of the developers! Testers are complaining of loss of
identity and scope within agile teams. In parallel some modern non-agile test-
ing approaches such as Risk-based testing also open the boundaries between
testing and analysis and suggest more involvement of testers in business and
system analysis and sometimes system architecture. This article devises an
adapted version of the V-Model for Scrum and suggests a practical approach
that aligns the modern testing approaches with agile methodolgies. Scrum will
be taken as a representative for Agile. The proposed approach is developed
based on the Testing Process Improvement Guide (TPIG) developed by the
Software Engineering Competence Center.

Keywords: Agile, Testing, Process Improvement, SCRUM, ISTQB, V-Model, TPIG.

1- INTRODUCTION

Testing has become a well-established discipline with the emergence of many
testing standards and models. The main concern of testing is assessing prod-
uct quality and isolating defects. This is an agreed goal whether in traditional or
Agile setups. Traditionally, testing is viewed as the safety net applied toward
the end of the development lifecycle to protect the end user from potential
product failures (product/quality risks). Testers were advised to plan for testing
as an independent activity from product construction (design and coding) and
to provide separate testing role/function for objective and independent evalua-
tion. However the Agile methods largely remove the distinction between roles
and functions inside the development team. Even when cross-functional teams
are formed, team members are not assigned distinctive roles but are rather
referred to as The Team (as per the Scrum methodology.)

In 2001, a group of individuals agreed on a common set of values and princi-
ples which became known as the Manifesto for Agile Software Development or
the Agile Manifesto [1], [2]. The Agile Manifesto contains four statements of
values:

The Adapted V-Model Ghanim

43

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

The Agile Manifesto argues that although the concepts on the right have value,
those on the left have greater value.

Some aggressive quality-oriented agile approaches such as Test-Driven De-
velopment (TDD) in the XP methodology switch the traditional order of coding
and testing and largely remove the boundary between them. Jonathan Kohl, a
known blogger on software testing writes on his blog: "I welcomed Agile Devel-
opment, and have championed it now that I’ve experienced it. I didn’t feel a
threat to my job as a tester, but I knew things were going to change. The only
thing that bothered me was a new impression towards testers that seemed to
be emerging. The attitude sounded like: we’re doing testing now thank you very
much, so we don’t know where you will fit in Agile projects” [3].

Testing and development are tightly related, but the interaction and boundaties
vary between development lifecycles. Testers must understand the differences
between testing in traditional lifecycle models (e.g., sequential such as the V-
model or iterative such as RUP) and Agile lifecycles (e.g. Scrum, XP, Pair Pro-
gramming…etc) in order to work effectively and efficiently.

One main aim for this article is to show how tester skills fit in agile projects. The
paper discusses a practical approach that aligns modern testing approaches
and techniques with Agile development and devises a clear process framework
for such alignment in the form of a modified V-Model for agile. The widely ac-
cepted ISTQB syllabus and its Fundamental Test Process will be taken as ref-
erence for modern testing approaches. Scrum which is the most widely spread
agile approach will be taken as a representative for Agile methodologies. The
article negates the hypothesis that testing as a role is demolishing or receiving
smaller weight in agile teams. In contrary it assigns higher weight to skilled
testers within agile development.

2- INDUSTRY ANALYSIS

This section shows how both testing and scrum certifications and trainings are
sought by the software engineers in Egypt as an indicator for the industry shift
toward modern testing as well as agile methodologies. The paper observes an
increasing demand on proper alignment between modern testing and agile de-
velopment. Testing training and certification have witnessed great growth in
Egypt in the past five years. We will base our analysis on the ISTQB training
and certification in Egypt as ISTQB has become the most used reference for
SW testing.

Since the first ISTQB training arranged by the Software Engineering Compe-
tence Center (SECC) in 2009 to a limited number of test engineers, hundreds
of testers are now certified against the different ISTQB levels. The growth re-
flects the need for modern and systematic testing approaches to deal with the

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

44

ever increasing business and technical complexity. In response to this, SECC
founded the Egyptian Software Testing Board (ESTB) which is the local arm of
the ISTQB in Egypt.

For Agile, demand is also evident. More companies and individuals are seeking
agile services and training. Testers are now required to align with companies
requirements to work within agile teams.

This section depicts the growth/trend in seeking both ISTQB and Scrum cours-
es and certifications. Data is based on SECC records. Data are collected till
end of August 2014 which means 2014 figures are subject to increase.

2-1 TESTERS DEMAND ON TESTING CERTIFICATION

Nearly two thousand test professionals from all levels have taken the ISTQB
foundation level exam in Egypt through the ESTB (additional unknown number
might have taken the exam online, but it is expected to be marginal.) Little
more than half this number succeeded in obtaining the certificate.

Figure 1. ISTQB Certification in Egypt

In parallel, SECC is offering training in a number of selected testing topics of-
fered in greater depth than the ISTQB standard training. Testers demand on
testing courses offered by SECC is shown in this chart:

Figure 2. SECC Testing Training Courses

It is interesting to see that Test Automation is ranked as number one testing
course in 2014, with the big role Test Automation plays in agile development as
the paper discusses below.

The Adapted V-Model Ghanim

45

2-2 DEMAND ON AGILE CERTIFICATION

In the other dimension of Agile/Scrum training and certification, agile profes-
sionals' demand on the relevant courses and certifications offered by SECC is
shown below:

Figure 3. SECC Agile Courses and Certificates

For companies seeking agile services, SECC records shows that since mid
2012 SECC provided Agile consultation service to around 30 Egyptian software
houses including some of Egypt's leading software houses with 200+ profes-
sionals.

SECC training records do not show the percentage of testers among the agile
trainee and certificate seekers. However the ISTQB provides some useful data
on the percentage of testers interested in Agile.

Among the software professionals interested in Agile, more testers are becom-
ing interested in Agile Testing. As per the research conducted by the ISTQB in
May 2014, 64% of the surveyed test engineers are interested in Agile Testing
certification. The following question was asked to test engineers and test man-
agers: "would you be interested in Agile Tester Certification?" The answers
were as follows with 64% of test engineers and 63% of test managers answer-
ing with yes:

Figure 4. ISTQB Testers Survey

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

46

We can conclude that Agile development in general and Agile testing in specific
are dragging more inertest and witnessing an increasing demand by software
engineers including test engineers. In parallel modern testing whether within
traditional or agile contexts is also a hot topic, and test engineers understand
the need for more systematic and more aggressive testing approaches to deal
with the quality challenges posed by the complex modern applications and
complex business needs. The paper concludes high urgency and importance
within the software industry in Egypt for aligning modern testing frameworks
with Agile development. A reasonable assumption can lead to extending this
conclusion to the software industry abroad.

3- TESTING IN TRADITIONAL DEVELOPMENT

One of the foundational software development models that emphasizes the role
of testing is the V-Model which is the basis for many other SW Development
and Testing models such as CMMI, TMMI and ISTQB. It provides the view of
testing as a process that runs in parallel with development. It also relates the
test execution phases known as test levels to product construction phases al-
lowing for more systematic test preparation and also test participation in con-
struction (through reviews and static verifications).

Figure 5. The V-Model

The V-Model is traditionally considered a Water-fall model not applicable to
iterative development especially Agile. Part of the key testing concepts in the V-
Model is test preparation as a separate phase from test execution.

The ISTQB syllabus sets a process model for testing known as the Fundamen-
tal Test Process which extends the concepts of prepration and execution and
the notion of test levels to include more specialized testing approaches and
techniques. Rsik-Based testing, test conditions, and Black-Box test design
techniques are some examples.

The Adapted V-Model Ghanim

47

Figure 6. The ISTQB Fundamental Test Process

A variation of the V-Model is the W-Model which adds test preparation and
review activities as another arm parallel to the construction arm.

Figure 7. Test Preparation and Reviews in the W-Model

In the V-Model and traditional development testers have quite a well defined
role with almost sharp separation between testing and other roles within the
development team.

Table 1. Responsibilities in Traditional Teams

Activity/

Work Product

Traditional Development

Analyst Developer Tester

Business Req. Develop - Understand

Acceptance Criteria Support - Develop UAT Test Cases

System Req. Develop Understand Understand

Test Cases - - Design Test Cases

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

48

Coding /Unit Testing - Code /Unit Test -

Test Automation - - Automate Test Cases

Test Execution - Debugging & Bug

Fixing

Execute Test Cases

Completion - Deliver Builds Evaluate Exit Criteria

4- UNDERSTANDING TESTING IN AGILE

Do testers really have to work differently in agile projects? What challenges
meet them? And how can they adapt to agile testing?

One of the main difference between traditional and agile development is the
idea of short iterations (sprints in Scrum). Testing is no longer an independent
phase at the end of the project. An Iteration must result in a working (possibly
shippable) product increment, which means well-tested components.

Testing iteratively poses challenges to testers which include (but not limited
to): testing is no longer done in isolation and testers have to closely coordi-
nate with developers, handling regression testing which leads to increasing
testing load over iterations, and dealing with technical-oriented activities such
as test automation.

4-1 TESTER’S ROLE IN AGILE

In Agile development the question of roles and responsibilities turns into a
question of skill and experience. Agile sets no sharp distinction between roles
and requires no specific team structure. It follows the whole-team approach
where the team shares responsibility over project success. Thus the tradition-
al separation of interests between quality and delivery is eliminated in agile. A
single "done" definition is provided which embeds quality targets into the
completion criteria for everyone. No team member can claim completion of
tasks if the user story is not done according to the done criteria and is not yet
"possibly shippable" to the customer.

The traditional dispute between quality and delivery interests owned by two
distinct roles: delivery-oriented people (namely developers and PMs) and
quality-oriented people (namely testers), is no longer valid. Accountability for
both delivery and quality is equally shared. It is now a question of sufficing the
necessary skills needed to achieve the "done" target than allocating different
responsibilities to different roles.

The same thing applies to others. In agile teams (and supposed to be in tradi-
tional setups as well) quality is everybody's responsibility! As far as testing is
concerned, everybody got to have a minimum level of testing and quality as-
surance skills. Such sharing of the quality concern is to be more integrated
into the design aspects of the product and to a large extent built in the product
design and coding from the beginning of the iteration.

Analysis (business analysis to some extent and largely system analysis) is

The Adapted V-Model Ghanim

49

also another responsibility and skill set that is now passed on to “The Team”
for more elaboration on the user story and for developing the story solution.

Therefore, the biggest challenge for testers when joining agile teams is to un-
derstand their participation in these areas and the amount of skills they need
to acquire in the other skill sets. We can categorize the skills needed within
agile teams into three main categories and propose a minimum set of shared
core skills by all agile team members to cover the essentials of each area and
allow for more collaborative efforts toward a well-engineered and defect-
sanitized product:

Figure 8. Testers Roles in Agile Vs. Traditional

Core skills include basic knowledge of the business domain, system analysis
concepts, and general architecture and design understanding. For testers and
developers: some basic coding (scripting) skill is needed for testers, and some
test design techniques skill is required for developers. Testers might need to
understand the impact of certain design patterns on system testability and
other quality characteristics.

4-2 TEST-FIRST DEVELOPMENT AND TEST-DRIVEN
DEVELOPMENT (TDD)

Test-Driven Development (TDD) means writing automated test drivers
(scripts) which represent a unit test case ahead of development so that devel-
opers will start writing code against it with the objective of getting the script
passed. Tests must start as failed with the absence of the corresponding code.
As the unit code is developed tests start to pass. After passing their tests code
units are refactored to improve their non-functional aspects keeping the tests
passed. All unit tests must remain successful as any change occurs to any
unit (see the continuous integration section below.)

TDD is largely considered a design and engineering practice rather than a
quality control practice. However, in TDD quality is built in the product units
from the beginning and testers can play an important role.

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

50

Figure 9. Test-Driven Development Cycle

In Agile development product modularity and maintainability is desirable to
allow for more modifiable and change friendly code. Smaller parts of the prod-
uct should independently function and provide value to end users. That means
a code unit such as a class or a service will have clearer user value than was
in traditional development which reduces the distance between system testing
and unit testing. Units are no longer purely technical with no clear traceability
to system test cases, and testers can very well help in specifying and design-
ing unit tests. Testers will start their test case specification on the unit level
taking into consideration the functional role of these units. Testers can pro-
ceed (based on their skills) in automating and scripting such tests and hand-
ing them to the developers. The practice helps developers understand the
value and business context of their code units, as well as it helps testers to
understand product architecture and code structure.

The TDD (if well collaborated between testers and developers) enforces code
granularity with strong business alignment which largely enhances product
maintainability and changeability than if done by developers alone.

Test-First Development

Test-first development is the manual version of TDD where test cases are not
automated. It is a less aggressive approach and does not lead to the same
level of granularity, but at least it ensures developing against very clear and
detailed targets and criteria. In this approach test cases are written against
user stories rather than individual classes. Test cases are considered as de-
tailed examples for clarifying the user story requirements to developers.

Specifying test cases in this approach starts before but can overlap with de-
velopment. Testers start by writing positive (happy scenario) test cases. As
developers are busy developing against these positive tests, testers continue
specifying the negative and exceptional test cases which can then get ad-
dressed as another round of developing the target user stories.

The test-first technique works very well with the test condition techniques dis-
cussed below.

The Adapted V-Model Ghanim

51

5- RISK-BASED TESTING AND AGILE

Risk-based testing is one of the important modern analytical testing strategies.
It introduces a new philosophy to the testing lifecycle. Traditional testing ap-
proaches depend on enumerating software requirements and designing test
cases for the best requirement coverage. Requirements are treated equally
and test execution is usually arranged based on First-In-First-Out basis with
testing effort proportionate to development effort.

A product/quality risk means a potential failure (or failure category) that has
direct impact to end user. Risk-based testing is defined by the ISTQB as an
approach to testing to reduce the level of product risks and inform stakehold-
ers of their status, starting in the initial stages of a project. It involves the iden-
tification of product risks and the use of risk levels to guide the test process
[4]. This means the more harmful defects will receive more effort and more
aggressive approach to detect and thus have a smaller chance to escape to
the operational environment. Moreover, components with higher risk levels are
supposed to be developed earlier in the project so they may be stabilized
enough before the final deadline is reached.

The article proposes an important intersection between risk-based testing and
agile development as discussed later.

5-1 RISK ASSESSMENT IN AGILE

There is an important intersection between risk-based testing and agile. User
stories are prioritized in the backlog considering the product risk level as one
of the prioritization parameters. Other parameters may include urgency to
business or dependency on other user stories. Testers can contribute their
risk-assessment skills in this stage.

Product risks need to be analyzed and assessed to assign an appropriate risk
level. Risk levels are very often measured based on risk impact and probabil-
ity. Impact means severity of the problem to the end user. The higher a failure
impacts users' interests, the higher the effort testers must incur to prevent it.
Measuring risk impact depends mainly on the type of the application and its
operational environment. Analysis is needed to understand the role played by
each function and its business sensitivity within the business domain. Such
analysis requires domain experience (business analysis) and adds a lot of
depth to understanding the business domain by the whole team. Such under-
standing is very important to testers as well as business and system analysts.
It is an important intersection between testing and business analysis.

Analyzing non-functional risks such as performance and security risks require
architectural knowledge and understanding of technology impact on these
quality characteristics. Proposed Architectural solutions can be compared for
their ability to reduce non functional product risks.

Risk probability means the likelihood of certain functional or non-functional
failures. The higher the probability the higher the effort to be incurred to detect
and fix this failure and prevent the risk. Failures with less probability will still

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

52

get adequate attention which will normally be less than the more likely fail-
ures. It is a common experience that failures' probability is proportionate to
code complexity. Code and design complexity cause the probability to differ
between two risks of equal impact. Probability may also be determined based
on requirement complexity (e.g. calculations and mathematical equations are
more likely to have mistakes made by analysts and developers.)

To understand the probability level of each risk, testers as well as analysts
and developers must perform complexity analysis of the different system func-
tions from both business and technical perspectives. The later will have to be
done late in the development lifecycle when the technical architecture and
design are available. Here comes more intersections with both business anal-
ysis and system architecture.

5-2 RISK MAPPING AND RISK PROFILE IN AGILE

Risks are then mapped to test objects to create a complete risk profile of the
application. Such risk profile will then be the basis for most of the decisions
taken by test leads starting from selecting the proper testing approach, to test
estimation, to evaluating test results and approving test exit. Drawing risk pro-
files (after completing risk assessment) requires good understanding of the
proposed software solution which intersects with system analysis. A new in-
tersection between testing and development.

Adequate resolution of risks (often called minimization of residual risk) is to be
part of the testing exit criteria and hence part of the done definition of any user
story. Acceptance of user stories by Product Managers and Customers largely
depends on the team success to reduce the probability of the identified risks
below a safe threshold (probability can never get to zero). Assessment of the
residual risk level and comparison to accepted thresholds is a skill contributed
by testers to the rest of the team.

So we can conclude that risk-based testing supports the collaborative devel-
opment encouraged by the agile methodologies and adds more rigor to a
number of agile practices. We can list the following intersections between test-
ing and the other disciplines within the agile teams as a result of the Risk-
Based Approach:

Business Analysis
 Product risk identification and assessment workshops where both

functional and non-functional risks are enumerated and studied for
their impact.

System Analysis
 Requirement complexity is assessed for evaluating product risk prob-

ability.

 Product risk mapping and evaluation of their applicability to user sto-
ries.

System Architecture
 Product risk probability is revised based on architectural decision.

The Adapted V-Model Ghanim

53

 Architecture is selected/optimized for risk level minimization.

Release Planning
 Stories are prioritized, sequenced and allocated to releases and

sprints with risk taken into consideration.

Story Completion
 The done criteria of the user stories include reducing product risk

probability and having residual risk below thresholds defined in the
testing exit criteria.

The whole Risk-Based testing approach improves the whole team under-
standing of both the problem and solution domains and builds a shared vision.

6- TEST CONDITIONS AS AN ANALYSIS TOOL

Test Condition is defined by the ISTQB as "An item or event of a component
or system that could be verified by one or more test cases, e.g. a function,
transaction, feature, quality attribute, or structural element."

Test condition identification is an interim step between requirement under-
standing and test case derivation. Requirements are often represented in the
unstructured form of textual description as in business requirements or user
stories, or in a lightly-structured form as in use cases and operational scenari-
os. Unstructured requirements are often not concise enough and have room
for ambiguity, omissions and under specifications as well as inconsistency,
redundancy and over specifications. Requirement reviews may lead to con-
siderable reduction in requirement anomalies. However, big percentage of
these anomalies escapes review to reach code. The less structured the re-
quirement representation the higher the chance for requirement anomalies.
Structured representations may include lists, ranges, boundaries, equations,
logical conditions, process diagrams…etc. Requirements that involve mathe-
matical equations may not be expressed in textual format but have to be spec-
ified using concise operations (e.g. <, >, <=, >= …etc.).

Deriving test cases from unstructured requirements is a heuristic process and
may lead to poor requirement coverage. Coverage cannot be guaranteed nor
calculated for unstructured requirements. There is always a room for false
assumptions or between-the-lines inferences. Moreover systematic test de-
sign techniques cannot work on unstructured inputs. For a technique to apply
systematic steps to derive test cases, requirements must be provided in a pre-
defined structure that can be interpreted by the techniques. For example input
data ranges with clear boundaries can be used as input for the Boundary Val-
ue Analysis (BVA) technique.

Having this said, Test Condition is a powerful approach to bridge the gap be-
tween requirement and test case and allow for the application of systematic
Black-Box Techniques.

A test conditions usually takes the form of an attribute that has one or more
mutually exclusive alternatives. For example a user account can be either:

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

54

open, closed or suspended. An insured person could be either under 18 (Age
<18) or from eighteen to sixty (18 =< Age <= 60), or older than sixty (Age >
60) where the "=" operation is clearly assigned to identify the exact boundary
between age ranges. Without such level of specification there is always a
chance for omitted account types (e.g. a closed account can be either expired
or terminated), or ambiguous specifications of boundaries (18 is part of which
range?, Should the system accept ages up to a maximum value such as 99?)
Test conditions leaves very little room for ambiguous or unconcise require-
ments. A number of black-box techniques can apply on test conditions such as
Equivalence Partitioning, Boundary Value Analysis, and Decision Tables to
derive test cases with very well measured coverage of the underlying re-
quirements.

Table 2. Test Condition Attributes

Test Condition Attribute Description

Condition Name Describe the general rule name such as Customer Age Bands or

Account Type

Test Object The system object (Screen, Service, Interface…etc.) on which

the rule apply.

Requirement Reference The user story, use case, or requirement item from which the

condition is derived.

Condition Type Conditions can be Boolean (True, False), Ranges, distinct val-

ues, or a constraint.

Alternatives These are the different (mutually exclusive) cases for the condi-

tions. Each condition can be an input range or a distinct value.

Expected Outcomes The expected system behavior per alternative.

Related conditions Other conditions that must be considered before determining the

exact system behavior. E.g. the result depends on both customer

age and account type.

Priority Help determining the priorities of the derived test cases.

With the above examples of test conditions we can see that such level of
structured specification although intended to serve test case design can also
serve as an analysis technique on its own merits. Expressing requirements in
such very detailed, concise, consistent, complete (…etc.) manner requires
answering many questions and validating many assumptions. Should we con-
sider age 18 part of the first or second age band? Should we have three or
four account types? Should we reject age after certain limit? And so on. The
one who can answer such questions is supposedly the customer or his repre-
sentative such as the product manager. Such work can be very justifiably de-
scribed as analysis work rather than testing work with considerable business
and system analysis skills involved.

Test condition specification provides big intersection between analysis and
testing, and also big collaboration point between testers and developers. It is
a powerful approach in any project setup whether traditional or agile.

The Adapted V-Model Ghanim

55

However, in traditional setups such practice is rarely recognized as analysis
effort, and little coordination is done between testers and developers in both
producing and consuming test conditions as they are often considered part of
the test process that is invisible to developers. Moreover, they cannot be vali-
dated by the customer to whom the tester has no access!

In Agile, test conditions can be recognized as full-fledged analysis activity that
elaborates on user stories and allows testers to act as complete analysts who
interact with the product manager as well as the customer. Test conditions are
validated by all stakeholders and are no longer inputs to test design only but
rather consumed by the whole team to provide a solid shared ground for de-
sign and coding. Design aspects such as "should the age field allow for more
than two digits" can be discussed and made between developers and testers
during test condition specification. There are many design aspects that can
impact how test conditions are specified. The same set of requirements can
be designed for better testability and more optimized tests impacting how test
conditions and test cases are specified. A workflow system that has a generic
toolbar that appear in all screens will be tested in a different way and with dif-
ferent number of test cases than a customized toolbar that changes from one
screen to another. Validations that are done on a field-by-field basis require
different test cases than aggregated validations at form submission, and so
on.

6-1 TEST CONDITIONS AND TEST-FIRST APPROACH

A more aggressive augmentation to the Test-First approach would be the use
of Test Conditions. In this approach the analysis role of the agile tester men-
tioned abie gets extended to include test cases as well. Test cases serve as
examples on test conditions for developers. The whole set of test preparation
work products (test conditions and test cases) become the basis for the de-
velopment work and provide the lowest possible level of analysis details that
can ever be furnished to developers. Test execution becomes a matter of re-
assurance while most defects are avoided from the beginning.

7- REGRESSION TESTING AND TEST AUTOMATION

Regression testing is highly related to change. Code changes may introduce
risks to already tested and stabilized components. Even with loosely coupled
product architecture, both business and technical impacts are never eliminat-
ed. Business impact means inter-related requirements with change on one
requirement entails revision to the other. Technical dependency results from
shared code resources. Regression is a big burden on testers as it requires
rerunning previously passed tests.

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

56

Figure 10. Testing Effort Growth per Iteration [5]

In Agile, regression risks are higher as change is introduced all the time. Even
if no user stories are modified after being developed, the fact that some de-
pendency exist between user stories, require retesting previously completed
stories with each new iteration. That means the more we proceed with new
iterations the more old user stories will possibly subject to regression. That
makes the regression suite grow over time to an extent that could consume a
whole iteration and the team velocity will get much slower by the time. The
only solution to this situation is Test Automation (TA). Testers (and developers)
are supposed to automate test cases (of all test levels) as they execute them
for the first time (often manually) so little manual regression testing will be
spent in future iterations.

As mentioned later in the Continuous Integration section, TA suites whether
for unit, integration or system tests can be included in the continuous integra-
tion process. So regression results can be reported to developers instantly (or
daily) after code submissions.

The TPIG product suite provides guidance for TA planning as well as design-
ing TA suites and frameworks [6]:

Figure 11. TPIG Test Automation Framework

The Adapted V-Model Ghanim

57

Test Automation requires considerable planning and preparation effort and
often faces technical challenges such as the use of custom controls and com-
plex programming interfaces. This makes Test Automation an important area
for collaboration between developers and testes. It is possible that developers
focus on unit test automation while testers focus on UI/System Test automa-
tion. But the more collaborative approach would be to work jointly toward all
types and levels of test automation, resulting in more efficient and well de-
signed automation suites and also continuous integration suites.

8- THE ADAPTED V-MODEL FOR SCRUM

Many perceive the V-Model as a competing model to Agile development, very
few proposals were made to align the V-Model to agile methodologies. Below
are two examples.

8-1 PREVIOUS STUDIES
Among the few examples is a proposal by Mark Monteleone President of
Monteleone Consulting in 2013 on modernanalyst.com [7] that maps the V-
Model phases to the Scrum activities.

Figure 12. Mark Monteleone V-Model for Agile Testing

The given mapping is useful for showing the applicability of mapping the V-
Model to the Scrum activities. As implied by the above figure, the V-Model
phases do not have to apply to development projects in the same frequency.
Phases can occure before or inside iterations. Which implies a kind of “spin-
ning” V-Model that spins with iterations but at different rates at its different lev-
els (the idea is clarified further below.) However this proposal is very high level
and does not adopt the modern testing standards and techniques. Testers still
need to see how testing processes such as the ISTQB fundamental test pro-
cess or SECC TPIG [8] can get aligned with Scrum.

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

58

Another attempt was made by Dublin Institute of Technology in 2013 in the
context of Medical Device software development projects [9].

Figure 13. Dublin Institute of Technology AV-Model

This proposal covers part of the V-Model phases and proposes them as suita-
ble for iterative development. The previous criticsm applies to this attempt too.

8-2 THE PROPOSED MODEL

This paper proposes an adapted version of the V-Model for Scrum that aligns
test preparation and test execution activities (as defined by the ISTQB) with
the activities proposed by the Scrum methodology. The adapted V-Model for
Scrum highly integrates the test preparation activities into the product con-
struction (Analysis/Design/Coding) activities.

Figure 14. The Adapted V-Model for Scrum

The Adapted V-Model Ghanim

59

In the adapted V-Model, product components are specified, designed and
coded with the whole team working hand in hand. Testers participate in the
daily stand-ups, get involved in the architectural and engineering discussions,
and start acquiring more engineering knowledge. Testers' quality concerns get
incorporated into product and components design from the beginning. Re-
views (formal or informal) become a culture with the whole team providing
useful inputs.

Dealing with defects becomes more proactive. More defect prevention takes
place than defect detection and testers' effort shifts more toward preventive
techniques. The agile techniques of Test-First and TDD can be easily applied
by basing coding on test case design (Test-First) or on automated tests (TDD)
where in both cases testers guide the development effort, not the other way
around, and quality is built-in from the beginning.

8-3 THE MINI-WATERFALL TRAP!

A sprint is not a mini-waterfall, as taught by Agile Coaches! Waterfall implies
sequential steps with little collaboration. A sprint follows a lean approach
where task sequencing is based on inherent dependencies rather than pre-
defined phases. Stories might get completed at different points of times during
the sprint. Some activities might be shared between stories and some are not.
Testers and developers work in parallel toward completing all activities. There
are almost no activity within the sprint that does not require the involvement of
both skill-sets of testing and development. One more practice that helps elimi-
nate the mini-waterfall pattern is Continuous Integration.

8-4 CONTINUOUS INTEGRATION

Continuous Integration (CI) streamlines the transition between coding and
testing and allows for parallel activities with almost zero lead time between
coding/fixing and testing/retesting. In contrary to daily or sometimes weekly
builds between development and testing as in the more traditional setups,
builds are made available to testers as new code unit is submitted. In CI, con-
figuration management, compilation, software building, unit testing, and de-
ployment are wrapped into a single, automated, repeatable process [10]. Even
integration and regression testing can get included through Test Automation.

Combining automated unit tests with CI makes code submissions and builds
instantly verified so they can get corrected by the submitting developer. Build
verification and entry criteria to testing become largely automated and build
frequency can be very high with little risk to quality.

Following developers’ coding, debugging, and check-in of code into a shared
source code repository, a continuous integration process consists of the fol-
lowing automated activities [10]:

 Static code analysis.
 Compilation, linking, and generating executable files.
 Unit testing and checking code coverage.

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

60

 Deployment into test environment.
 Integration testing
 Regression testing.
 Results and status reporting to the team.

Continuous Integration frees testers from focusing on Build Verification Tests
(BVT), smoke tests, and solving build problems to focusing on defining an
effective CI strategy. They can add to the design of CI processes by adding
automated integration and system test cases. Testers can also contribute by
providing requirements for static code review for the non-functional aspects of
the code such as performance and security.

8-5 THE ADAPTED V-MODEL FOR SCRUM – COLLABORATIVE
VERSION

The following diagram shows a more improved version of the adapted V-
Model for scrum which emphasis the collaborative approach:

Figure 15. The Adapted V-Model – Collaborative Version

In this version of the adapted V-Model, working on user stories overlap and
the mini-waterfall trap is avoided. Testing is highly integrated with develop-
ment. Testers and developers are closely coordinating their micro-steps. Po-
tential collaboration includes, but not limited to the activities' listed in the fol-
lowing table:

Table 3. Tester-Developer Collaboration

Activity/Work Product Tester Developer

Component Specification

Support/Develop

Coordinate with Customer/

Product Manager

Develop

The Adapted V-Model Ghanim

61

Test Conditions Develop Support and Review

Test Cases Develop Review

Test Automation Suite Develop Support/Develop

Component Design
Reassess Product Risks

Improve Test Cases
Develop

Automated Unit Tests Support/Develop Develop

Code Improve Unit Tests

Develop

Improve Unit Tests

Refactoring

Component Testing Execute Debug/Fix

System & Integration

Testing

Execute

Analyze Dependency and Re-

gression

Debug/Fix

Support Analysis

Acceptance Testing
Customer/Product Manager

Coordination
Rework

9- PROPOSED TESTER RESPONSIBILITIES IN THE AGILE

Based on the above discussions we can summarize tester's responsibilities in
Agile projects as proposed by this article as follows:

Table 4. Proposed Tester Responsibilities in Agile

Activity/ Work Product Traditional Proposed Approach

Business Req./

User Stories

Understand Review User Stories

Ensure Functional/Non-Functional

specification.

Test Strategy Develop

Develop

Identify Product Risks Collaboratively

Acceptance Criteria Develop UAT Test Cases Review Acceptance Criteria

Project/Release Plan Commit! Assess/Map risks to user stories

Risk Point Estimation

Contribute to user stories priorities and

sequence

Test Plan Develop Develop as part of Release/ Sprint Plan

System Req. Understand Develop Test Conditions

Test Cases Design Test Cases Design Test Cases

Coding / Unit Testing - Design Unit Tests

Guide coding (TDD)

Test Automation Automate Test Cases Automate Test Cases

Test Execution Execute Test Cases Execute Test Cases

Participate in designing Continuous

Integration suites.

Completion Evaluate Exit Criteria Calculate Residual Risk

Satisfy the "Done" definition

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

62

We can see that this approach assigns testers greater responsibilities than
thought before which means the weight assigned to professional and skilled
testers in agile is very high and can even be higher than traditional develop-
ment.

10- BENEFITS OF THE PROPOSED APPROACH

In general, the early involvement of testers in the development cycle, their
clear participation in Business/System analysis, and the close collaboration in
design/coding, leads to quality being built in product from the beginning rather
than assessed and controlled at the end. The essence of the V-Model is early
testing and early defect detection/removal which are highly evident in the pro-
posed approach. The "throw-over-the-wall" syndrome where one role passes
its ill-completed output to the next role is eliminated (such behavior was often
responsible of another syndrome known as the "squeeze-against-the-wall"
where testers often get stuck with over squeezed testing time and a non-
movable delivery wall!) The final result is assumed to be reduced Defect Den-
sity (DD), reduced Cost of Quality (COQ), and improved Defect Removal Rate
(DRR). More measures include improved Project Schedule Variance (SV) and
Project Cost Variance (CV).

Little empirical data is available on the DD and COQ measures. However, in
the number of agile companies that implemented this TPIG approach consid-
erable DRR improvement was measured with also high SV and CV improve-
ments. The DRR is calculated as follows:

DRR = Pre-Release Defects / (Post Release Defects + Pre-Release Defects)

The following graph is based on real TPIG implementation at SECC custom-
ers during the first round of TPIG implementation in 2010/2011. It shows con-
siderable improvement in three different measures (DRR, SV and CV).

Figure 16. TPIG for Agile Improvements

The Adapted V-Model Ghanim

63

The Figure shows around 9% DDR improvement before and after the adop-
tion of the proposed approach which means 9% of the overall product defects
(around 42% of the production defects) are now discovered by testers rather
than users. A great quality gain based on a single process improvement initia-
tive.

For the COQ measure, the ASQ (asq.org) defines it as follows:

COQ = Prevention Costs + Appraisal Costs + Failure Costs (Internal and Ex-

ternal)

Based on the empirical analysis performed by SQS Company in Europe over
5000 projects completed in the past fifteen years, the defect failure cost is re-
duced by at least 50% by moving defect detection from production to testing.

Figure 17. SQS Cost of Defect Curve

Combining this with the 9% DDR improvement shown in the above case study
and assuming 100 EGP average cost per production defect, and 50% cost
reduction in pre-production defects, the following results are gained for each
100 defects:

a) Before TPIG Implementation:

Failure Cost of Production Defects = 21 * 100 = 2,100

Failure Cost of Pre-Production Defects = 79 * 50 = 3,950

Total Failure Cost = 2,100 + 3,950 = 6,050

b) After TPIG Implementation:

Failure Cost of Production Defects = 12 * 100 = 1,200

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

64

Failure Cost of Pre-Production Defects = 88 * 50 = 4,400

Total Failure Cost = 1,200 + 4,400 = 5,600

c) Failure Cost Saving:

Failure Cost Saving per 100 defects = 6,050 – 5,600 = 450

Failure Cost Saving Percentage = (450/6,050)*100 = 7.4%

The 7.4% figure is the absolute minimum as it assumes the DDR improve-
ment is based on defect detection during the test execution phase only. Con-
sidering improved defect prevention (early detection) the ratio can grow to
anywhere between 7.4% and around 14% (detection cost during analysis is
only 1% of the production cost)

Further reduction could be calculated should we have data related to Defect
Density (DD). Defect correction (debugging and bug fixing) as part of failure
costs is reduced through the reduction of defect density in the product as a
direct result of early defect detection.

In addition to the above quantitative improvements the following qualitative
improvements are assumed in different areas:

Management Benefits

1. Time-to-Delivery is improved by taking the test-rework-retest cycles to the
minimum.

2. A unified understanding of scope and requirements improves collaboration
and reduces conflicts among the team, and requirement assumptions are
largely eliminated.

3. Testers' analytical skills are leveraged for the benefit of the whole team.
There is little room for ambiguous, incomplete, inconsistent or non-
testable requirements.

4. Test-First and TDD lead to better traceability of requirements to code
units.

5. Risk assessment during story writing leads to better priorities. It allows the
product manager to wisely set a proper release plan to maximize risk mit-
igation and minimize residual risk at interim or final product releases.

Analysis Benefits

1. Test conditions, positive/negative tests with clear expected result, test de-
sign techniques, requirement coverage measures, all augment business
and system analysis by additional analysis levels that result in clean spec-
ifications with small chance for defects and false assumptions.

2. The practice of risk assessment and risk mapping is another addition to
analysis. For example, identifying localization issues (multi language sup-
port, currency exchange…etc.) during risk assessment workshops will
lead to additional rounds of analysis for these areas and hence the devel-
opment of more complete and accurate requirements.

The Adapted V-Model Ghanim

65

Engineering Benefits

1. In addition to providing complete and concise input to developers, agile
testers develop better understanding of system architecture and design
and their impact on the different quality aspects (functional or non-
functional). This will lead to improving architecture and design over time
and taking more enlightened engineering decisions.

2. Trade-offs between architectural and design alternatives better considers
impact on quality attributes which can stem from the team accumulated
experience in resolving functional and non-functional product risks.

3. Testers may start contributing to design reviews and static code analysis.
They can also provide a lot of functional value to unit tests by making
them more purposeful.

11- CONCLUSION

Modern testing concepts, approaches and techniques are not in conflict with
agile methodologies. In contrary they can perfectly fit within agile development
and foster the fulfillment of the agile values and principles. Approaches such
as risk-based testing and test condition strongly support agile teams and allow
for more collaborative effort toward analysis, engineering and quality control. It
also supports developing shared vision and common understanding between
the team members and other stakeholders. Tangible management benefits
are also achieved in avoiding the mini-waterfall trap and reducing team con-
flicts.

The V-Model which is a dominating model behind many other development
process models such as the CMMI for Dev. can be adapted to agile method-
ologies to carry on its very same benefits as in traditional development. The V-
Model will serve as carrier of the modern testing techniques (risk-based, test
conditions, Black-box techniques…etc.) to the world of agile development.
Effort has already been made in implementing the adapted V-Model model
through SECC Testing Process Improvement Guide (TPIG). Case studies that
prove the benefit of the approach are already established and some data are
gathered and analyzed to prove the case. More data are still to be collected
for the different testing measures such as the DDR, DD and COQ.

The conclusion is that testing is not a downgraded role in agile. The miscon-
ception that agile teams do not need specialized testers is to be cleared. Test-
ers play very powerful role in agile but with some adaptation and skill devel-
opment toward business analysis and engineering. Testers need also to utilize
their analytical skills for the whole team benefit, as well as providing support to
product engineers which will require acquiring/developing some understand-
ing of product architecture and design. Scripting skills are strongly needed for
test automation in addition to testing the non-functional test types such as per-
formance.

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

66

REFERENCES

[1] Agile Alliance Guide, Various contributors, guide.Agilealliance.org [Last
accessed: June 2015]

[2] Agile Manifesto, Various contributors, www.agilemanifesto.org [Last ac-
cessed: June 2015]

[3] Jonathan Kohl, http://www.kohl.ca/2003/testers-on-agile-projects/ [Last
accessed: June 2015]

[4] International Software Testing Qualifications Board (ISTQB): Certified
Tester Foundation Level Syllabus, version 2010.

[5] Hans-Eric Grönlund: www.hans-eric.com [Last accessed: June 2015]

[6] Y. Ghanim, G. Aly, “A Practical Approach to Test Automation,” EuroMed
SPI conference, 2011.

[7] Mark Monteleone, A Proposal for an Agile Development Testing V-Model,
http://www.modernanalyst.com/Resources/Articles [Last accessed: June
2015]

[8] Y. Ghanim, H. Osman, G. Aly, “A Practical Approach to Functional Test-
ing for SMEs,” EuroMed SPI conference, 2010.

[9] M. Mc Hugh, O. Cawley, F. McCaffery, I. Richardson, X. Wang, “An Agile
V-Model for Medical Device Software Development to Overcome the
Challenges with Plan Driven SDLCs,” 5th International Workshop on
Software Engineering in Health Care (SEHC), pp. 12-19, 20-21 May
2013.

[10] International Software Testing Qualifications Board (ISTQB): Foundation
Level Extension Syllabus Agile Tester, version 2014.

The Adapted V-Model Ghanim

67

http://www.agilemanifesto.org/
http://www.kohl.ca/2003/testers-on-agile-projects/
http://www.hans-eric.com/
http://www.modernanalyst.com/Resources/Articles

