

Detection and Analysis of Clones in UML
Class Models

Dhavleesh Rattan
 (1),

 Rajesh Bhatia
 (2),

 and Maninder Singh
 (3)

(1) Department of Computer Engineering. Punjabi University (India)
E-mail: dhavleesh@rediffmail.com

(2) Department of Computer Science and Engineering. PEC University of Technology

(India)

E-mail: rbhatiapatiala@gmail.com

(3) Computer Science and Engineering Department. Thapar University (India)

E-mail: msingh@thapar.edu

ABSTRACT

It is quite frequent to copy and paste code fragments in software development.
The copied source code is called a software clone and the activity is referred
to as code cloning. The presence of code clones hamper maintenance and
may lead to bug propagation. Now-a-days, model driven development has
become a standard industry practice. Duplicate parts in models i.e. model
clones pose similar challenges as in source code. This paper presents an
approach to detect clones in Unified Modeling Language class models. The
core of our technique is the construction of a labeled, ranked tree
corresponding to the UML class model where attributes with their data types
and methods with their signatures are represented as subtrees. By grouping
and clustering of repeating subtrees, the tool is able to detect duplications in a
UML class model at different levels of granularity i.e. complete class diagram,
attributes with their data types and methods with their signatures across the
model and cluster of such attributes/methods. We propose a new
classification of model clones with the objective of detecting exact and
meaningful clones. Empirical evaluation of the tool using open source reverse
engineered and forward designed models show some interesting and relevant
clones which provide useful insights into software modeling practice.

Keywords: Maintenance, Model clone, Model clone detection, UML Class models,
Reverse Engineering.

1- INTRODUCTION AND MOTIVATION

Now-a-days modeling is playing a significant role in industries of different
domains like automotive domain, web based applications and other complex
systems [1]. Model driven software development using Unified Modeling
Language (UML) improves the quality of product delivery and analysis of the
product [2]. UML models bring in extra advantages of automatic code
generation, early verification and validation [2]. Since modeling has been
accepted as best practice, UML class models may also be analyzed for the
presence of clones.

Detection and Analysis of Clones in UML Rattan, Bhatia, and Singh

69

Clones in UML class models refer to the presence of duplicate parts, i.e. set of
identical attributes, operations or both across different classes in the model.
On the other side, code clone detection has been an active area of research
for long [3]. Evidences suggest that the presence of code clones may lead to
bug propagation and maintenance problems [4]. For example, if one fragment
of code is changed, that change has to be carried out in all duplicate instances
which may lead to missing or erroneous changes [5]. As UML models provide
an abstract view of the system, thus detecting clones in models is equally im-
portant because similar challenges exist in the case of UML models [6], too.

An existing tool for clone detection in UML models is MQlone that presented
model clone classification adapted from the work on source code clones [6].
Since UML modeling has got inherent object oriented features [7], thus our
classification of model clones is inspired from these object oriented character-
istics of UML class model where we view the model as a collection of logical
entities defining data and behavior [8].

Primarily, the objective of our study is to detect model clones and present our
classification and findings as observations of the characteristics of model
clones. Our use case is to detect and analyze clones in forward designed
UML class diagrams and open source reverse engineered class models. The
detected exact and meaningful clones help in understanding the characteris-
tics of UML models with regard to cloning. The major contributions of our ap-
proach are:

 Detection of model clones in UML class diagrams at different levels of
granularity i.e. single attribute/operation*, set of attributes/operations*
and recurring classes with their members*.

 Detection and classification of model clones as:

o Type-1 : model clones due to standard modeling/coding practice

o Type-2 : model clones by purpose

o Type-3 : model clones due to design practices

 Carry out the empirical evaluation on reverse engineered open source
system. Moreover, we are also considering forwarded designed mod-
el for evaluation to capture the essence of model driven develop-
ment.

In this paper, the background of our work is mentioned in the next section.
Some elaborative examples to understand our classification of model clones
are present in section 3. Section 4 of the paper explains our approach of
model clone detection. The empirical evaluation and results of the tool are
included in Section 5. A brief survey related to work in model clone detection
and comparison with existing work is done in section 6. Section 7 discusses
the findings. Finally, section 8 concludes the work and briefly presents the
scope for future work.

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

70

*For the sake of clarity, the member fields/attributes of a class with its data type will be referred to

as a field/attribute and a method/operation of a class with its complete signature (return type and

arguments) will be referred as a method/operation throughout the paper.

2- BACKGROUND

2-1 MODEL CLONE DETECTION

To know the current state of the art in model clone detection, we came across
techniques in the literature to detect clones in Matlab/Simulink models [1],[9]-
[11],[20]. Most of the approaches are graph based and clone detection is car-
ried out by applying graph matching techniques. But in case of UML models
significant differences emerge after we transform a model into a graph. Störrle
[6] has stated this difference in his study that “UML models are not densely
connected graphs of lightweight nodes, but rather loosely connected graphs of
heavy nodes”. Therefore, a tree based approach is beneficial in exploring the
heavy nodes of UML model, i.e. classes, its members (attributes/operations)
and relationships among classes. In our approach, we construct a labeled
ranked tree from the UML class model. The detail of our approach of model
clone detection is present in section-4.

In a recent study by Saez et al. [13], a controlled experiment is carried out to
compare the effectiveness of forward designed and reverse engineered mod-
els. The results of the study promoted the use of modeling as forward design
models are easier to understand and maintain. Moving in the same direction,
we evaluated our tool on forward designed and reversed engineered open-
source UML class models.

2-2 REASONS FOR MODEL CLONES

Here we mention some of the reasons in brief that might lead to clones in
UML models:

 Accidental Cloning

 Lack of restructuring and programmers’ limitation

 Reuse through copy and paste

 Language limitation

2-3 DEFINITIONS

We skip definitions of code clones, types and detection techniques in this pa-
per. The interested reader may refer to detailed, recent survey by Rattan et al.
[3]. Definitions necessary for evaluation and understanding of the proposed

Detection and Analysis of Clones in UML Rattan, Bhatia, and Singh

71

work are:

Definition 2.1 (Model Element)

A model element refers to a class, an attribute declaration (data type and
name of the attribute) or a method signature (return type, name of the method
and the data type of parameters) in a UML class model. It is abbreviated as
ME throughout the paper. #ME refers to the total number of model elements
extracted from the XMI [14] file of the UML class model.

Definition 2.2 (Model Clone)

A model clone is a pair (A,B) where A & B are identical sets of model elements
present in the model. A set of model elements may contain a single model
element or a group of model elements.

Definition 2.3 (Frequency)

It is the total number of occurrences of a particular model clone across the
model. It is calculated for all the model clones.

Definition 2.4 (Clone Cluster)

A group of model elements present in a model clone is referred to as a clone
cluster.

It is represented as triplet (uid, size, C) where

 uid is the unique identifier of the cluster

 size is the total number of model elements in the group

 C is the frequency of clone cluster

This definition is purposely included for classifying model clones as type-2 and
type-3 as discussed in detail in section-5, where a detailed evaluation is given
for different subject systems.

Definition 2.5 (Coverage)

It defines the number of duplicate model elements vs. total model elements
(#ME). In other words, it determines the probability that a random model ele-
ment is part of a clone. E.g. in next section in Fig. 1 on library management
system, there are 24 model elements. Out of these, 4 are cloned ME. So the
coverage % is 16.6%. It specifies the extent of duplication across classes in a
UML class diagram.

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

72

Clone coverage has been successfully used in evolutionary analysis of soft-
ware systems like Linux kernel [12]. By the same token, we believe that clone
coverage be applied in the evolutionary study of model clones as well.

Göde et al. [15] has mentioned clone coverage as an important cloning metric.
The study highlight minimum clone length, normalization, structure and design
of the subject system as key factors affecting clone coverage. In our paper, we
have taken the minimum clone size to be 1 (a single model element) and it is
done uniformly for all the subject systems to make the results usable. We
understand that when the minimum clone length is increased, clone coverage
may decrease.

3- MODEL CLONE DETECTION BY EXAMPLE

The objective of our technique is to automatically detect exact and meaningful
clones. Thus we propose following categories with an explanation using
different examples.

Consider the sample UML class model of a library management system shown
in Fig.1. From the domain perspective, this model appears to be simple;
however, in the context of model clone detection, it will serve our purposes
well.

Some fields/operations tend to repeat a lot in UML class model and in code.
As shown in Fig. 1, we notice that field id: Integer is present in most of the
classes. It is a modeling practice to uniquely identify an instance of an entity.
We named such clones to be type-1-Model clones due to standard model-
ing/coding practice. We noticed such repetitions in reverse engineered class
diagrams, too. One of them is serialVersionUID, which is used as a version
control in Serializable class. The fact is that the serialization runtime associ-
ates with each serializable class a version number which is used during dese-
rialization to verify the sender and receiver. If serialVersionUID is not explicitly
declared by a serializable class, then the runtime will calculate a default
serialVersionUID for that class.

Another example is readObject and writeObject which are used in Java’s seri-
alization to read and write byte stream in physical location. Most of these
technical details surface in reverse engineered models and are unlikely to ap-
pear in realistic models. It may seem irrelevant in the first observance, but we
intend to bring them into notice as well. Type-1 clones most of the time con-
sists of a single attribute/operation. Thus the minimum clone length is set to 1
for identifying such repeating field/method. Surely, the presence of these fields
in classes suggests application of programming/modeling practice.

Detection and Analysis of Clones in UML Rattan, Bhatia, and Singh

73

Figure 1 Class diagram for library management system.

Fig. 1 also shows a generalization relationship. The user generalization is
shown as Student class and Faculty class to be the subclasses of the User
class. Both the subclasses override an operation named details (): String from
the parent class. The details (): String operation must be implemented for
each kind of user. This model clone is reported to occur in parent and all the
subclasses because of the nature of the relationship. In other examples, there
are several reasons why one may wish to override a feature. These types of
clones are categorized as Type-2-Model clones by purpose. In a nutshell,
overriding is an important and useful language feature in object oriented pro-
gramming.

Interfaces are an integral part of UML class diagrams. An interface is a class
like construct which shows a collection of operations that specify a service to
a class. In a UML class model, realization relationship is used to show an ab-
straction and its implementation. Fig. 2 shows an interface ChoiceBlock with
two abstract methods setDefault (choice: Choice) and getChoice (): Choice.
ChoiceBlock aims to specify the behavior of classes PopUpMenu and
RadioButtonArray using realization relationship. Both of these classes imple-
ment the abstract methods specified in the interface. A number of program-
ming languages support the concept of interfaces. E.g. in Java programming
language interface keyword is used to specify an interface. This repetition of
abstract operations in the interface and its implemented classes is also cate-
gorized as Type-2-Model clones by purpose.

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

74

Figure 2 Realization relationship [16].

Figure 3 A class diagram for courier mangement system.

In Fig. 3, a class diagram of the Courier Management System is shown.
Among all the classes viz. CompanyOwner, Customer, Franchisee and Em-
ployee, we see a repetition of a group of fields and methods. In the figure,

Detection and Analysis of Clones in UML Rattan, Bhatia, and Singh

75

there is a large cluster of size 5 i.e. address: String, compensation (): Integer,
name: String, phNo: Integer, updateDetails (): void which is present in 2 clas-
ses namely, CompanyOwner and Franchisee. The second cluster of size 4 is
id: Integer, name: String, address: String, phNo: Integer which is present in 3
classes namely, CompanyOwner, Customer and Employee. The last cluster of
size 3, viz. name: String, address: String and ph No: Integer is present in all
the classes. This type of repetition in different classes as reported by the pro-
posed technique is categorized as Type-3-Model clones due to design
practices. Table 1 shows all these clusters together with the type of clone.
This may be the result of unfinished design or due to any other possible rea-
son. Thus, these clones may subject to further improvement in the design w. r.
t. maintainability and extensibility.

Table 1 Analysis of courier management system

Number of different model el-

ements

Total = 17; Classes= 4; Methods= 9; Attrib-

utes= 4

Sr.

N

o.

Name of attribute/method Freq Classes

1. compensation(): Integer,

updateDetail(): void

2 CompanyOwner, Franchisee

2. id: Integer 3 Customer, Employee, Franchisee

3. Address: String, name:

String, phNo: Integer

4 CompanyOwner, Customer,

Employee, Franchisee

Coverage % 35% (6/17)

Clone Cluster UID Size C (Classes) Type of clone

1 3 4 Type-3

2 4 3
Type-3

3 5 2
Type-3

Table 1 shows the results after applying the proposed technique on the UML
class model shown in fig. 3. In total we get 17 model elements comprising of 4
classes, 4 attributes and 9 methods. The list of model elements with their fre-
quency and list of classes in which they appear are shown in table 1. The ta-
ble lists the coverage % of the model. This is the number of cloned model el-
ements vs. total number of elements. Among the total 17 model elements, 4
fields and 2 methods are repeating. It gives 35% coverage.

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

76

4- PROPOSED APPROACH FOR DETECTING MODEL
CLONES

In this section, we formalize our approach of model clone detection that
consists of three broad steps. Firstly, we export the UML class model to
XMI file and parse the XMI file to construct a labeled, ranked tree. In the
second step, we apply the algorithm to detect model clones in the
constructed tree. In the final step we classify the detected model clones
into different categories. Fig. 4 shows the block diagram of the proposed
technique.

Figure 4 Block diagram of the approach.

4-1 MODELING AND PREPROCESSING

Modeling:

We use MagicDraw Enterprise 16.6 CASE tool for creating forward designed
UML class model and for reverse engineering open source subject system.
The model is then exported to an XMI file using XMI export facility of the
CASE tool. The exported XMI file is input into our tool to parse and extract
information related to our clone detection process.

Preprocessing:

The exported XMI file contains a lot of tool specific information along with the
class diagram/model data. Thus, the parsing of XMI file is a major step to ex-
tract data of interest i.e. model elements. The XMI elements/nodes are then
realized into a tree structure equivalent to the model keeping in mind the con-
structs of language like nesting of packages, declaration of classes, fully quali-
fied definition of attributes and operations (model elements). Generally, when
the UML class model is created, the members of the class may be added in
no particular order. So, during parsing of XMI file, these model elements are
fetched and stored in lexicographic order in the tree.

Detection and Analysis of Clones in UML Rattan, Bhatia, and Singh

77

The algorithm to construct the tree and related definitions are as follows.

Definition 4.1.1 (Element)

It is a common term that refers to a package or class or child class or field
(attribute) or method (operation).

Definition 4.1.2 (PackageNode)

It stores information about a package element, its sub packages and classes.

Definition 4.1.3 (ClassNode)

It stores information about a class element, its inner-classes, fields and meth-
ods.

Definition 4.1.4 (ModelTree)

It is the tree constructed from model elements.

Definition 4.1.5 (Rank)

It is the out-degree of a node of the tree.

Figure 5 Different nodes of algorithm 1 as implemented.

Fig. 5 shows different nodes defined above. These are used in Algorithm1 for
storing data extracted from XMI file of the model for pre-processing.

Following is the algorithm applied to construct the ModelTree:

Algorithm 1: Tree Construction Algorithm

Input: An XMI file of UML class model exported by MagicDraw

Output: The post-fix traversal of the ModelTree with rank

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

78

find: The root package of UML model and store it in ModelTree

1) Read all the children of the root package node.

2) If the child is a package then store it in the ModelTree under its parent
PackageNode and read all the children of this package recursively till all the
packages are read.

3) If the child is a class then store it as ClassNode in the ModelTree under its
parent PackageNode

4) Read all the children of the ClassNode recursively

4.1) If the child is a field, then read its label and data type then add to the
class’s fields.

4.2) Else if the child is a method, then read its label, return type and paramec
xc 65gter types and add to the class’s methods.

4.3) Else if the child is an inner-class then store it in the ModelTree under its
parent ClassNode from step 3.

5) Traverse the constructed ModelTree in postfix order and store it in a list.

4-2 DETECTING CLONES

In the preprocessing phase, we constructed the ModelTree from the UML
class model.

Fig. 6 shows the tree representation of UML class diagram shown in fig. 3
(Courier Management System). An attribute model element consists of data
type and the name. This is shown as a subtree consisting of two nodes, i.e. a
data type node with the attribute name as its child node. Various attribute
model elements are depicted in red color in fig. 6. Similarly, a method model
element is also represented as a subtree with its return type, name and argu-
ments located at different levels of the same subtree. Various method model
elements are shown in blue color in the above figure. Therefore, detecting
repeats of these subtrees in the model tree is essential to find model clones.
To achieve this, we are using the approach by Christou et al. [17] to compute
subtree repetitions. The technique is based on accepting the postfix string
representation of the tree and computing subtree repeats with varying sizes in
a bottom-up manner. The algorithm has got linear time and space complexity.

The tree diagram in fig. 6 also shows the postfix string representation of the
model tree on the right hand side. The rank (out-degree of a node) in the tree
is shown on the top of the respective node.

Detection and Analysis of Clones in UML Rattan, Bhatia, and Singh

79

Figure 6 Tree representation of the UML class model.

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

80

4-3 POST PROCESSING AND CLUSTERING CLONES

The output of previous phase reports identical subtrees in the form: set of
starting positions, length in corresponding to the input postfix string represen-
tation. We need to apply extensive post-processing techniques to make the
results useful in a way we require to present the classification and granularity
of our approach. To achieve this, the tool maps the output of algorithm to the
model tree (constructed in pre-processing phase) for retrieving the results.

Figure 7 The input and output of the subtree repeat algo-
rithm [17] for a sample class model.

We intend to demonstrate this with an example. A small class diagram having
two classes with a pair of repeating attributes is created. Fig. 7 shows the ac-
tual output of the algorithm [17] in the form of sets of starting positions of re-
peating subtrees and their lengths. As this output cannot be directly applied to
our approach, so the post-processing phase becomes an integral part of the
whole process.

Following is the procedure to calculate frequency of cloned ME, grouping and
clustering.

Note: OPL refers to ordered postfix list. l refers to label which is either a field
or method. Ci indicates classes in ModelTree. CRM refers to class relation-
ship matrix. A matrix element with non-zero value signifies relationship be-
tween classes or interfaces. Each relationship type is denoted with a unique
identifier.

Detection and Analysis of Clones in UML Rattan, Bhatia, and Singh

81

A) Frequency:

Firstly, the tool applies following algorithm to distinctly report model clones
with frequency 2 and model clones with frequency more than 2. The latter set
of model clones is inspected to state type-1 clones.

Algorithm

1. For each repeating l ∈ OPL

 1.1) [RepeatsList] l

2. For each l ∈ [RepeatsList]

 2.1) Count the occurrences, o of l in OPL

 2.2) [NewList] (l, o)

 2.3) l is categorized as field or method in [NewList]

B) Grouping:

This step is the prerequisite for clustering algorithm.

Algorithm

1. For each l ∈ [RepeatsList] && Ci ∈ ModelTree

 1.1) If l ∈ Ci

 1.1.1) [GroupingList] (l, C1, C2, ..,Cn)

 1.1.2) l is categorized as field or method

2. For each Ci ∈ ModelTree && (l ∈ [RepeatsList] && l ∈ Ci)

 2.1) [RepeatsinClass] l

 2.2) l is categorized as field/method

[RepeatsinClass] stores the repeating fields/methods for each class, with their
count.

C) Clustering:

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

82

To classify and report the clones as type -2 and type-3 model clones, the tool

 1) Cluster the duplicate model elements

 2) Find occurrence of such cluster across classes

 3) Determine the relationship between those classes

Algorithm

1. For each Ci ∈ ModelTree

 1.1) For each l ∈ Ci && l ∈ [RepeatsinList]

 1.2) Store repeating l for corresponding Ci

[Traverse the RepeatsInClass and get a list of repeating members for that
Class]

2. For each Ci ∈ ModelTree

2.1) Compare [RepeatsInClass] for Ci in Step-1 to the Ci in this step
(Step-2)

3. [Cluster] Ci

[Clusters of repetitive members (Fields/Methods) and their presence in Clas-
ses through-out the model]

4. Determine the nature of relationship from CRM among the classes from
step-3.

4-4 EXPERIMENTAL SETUP

The proposed technique has been implemented in Java and runs under Win-
dows 7. It is capable of detecting model clones in any object oriented class
model.

Table 2 Hardware configuration and software tools

Processor Intel (R) Core (TM) i3-3110M CPU@ 2.40GHz

Installed Memory (RAM) 4.00 GB

System Type 32-bit Operating System

Windows Edition Windows 7 Professional N Service Pack 1

Integrated Development

Environment

 NetBeans IDE

 Bloodshed Dev-C++

Detection and Analysis of Clones in UML Rattan, Bhatia, and Singh

83

Software Development

Kit

Java Development Kit 6

Software Modeling Tool MagicDraw

The tool receives XMI file of the class model as input and reports the clones
as per the defined classification with the count. The tool uses the given algo-
rithm by Christou et al. [17] to compute similar subtrees which has linear time
and space complexity. Table 2 lists the hardware configuration and software
tools needed in the implementation.

4-5 PERFORMANCE ANALYSIS

Our tool can detect the model clones as proposed in the technique very
efficiently. Since our tool is a multiphase detection approach, we tried to
estimate the computational time of each phase using an average of five
iterations for the same input. The execution time is reported in milliseconds. It
takes less than 1 minute to detect model clones in eclipse-ant, eclipse-jdtcore
and netbeans-javadoc with more than 290 model elements.
Table 3 shows the actual measurement of time when the tool is executed on a
PC with the configuration as given in table 2.

Table 3 Execution time

 eclipse-ant
eclipse-

jdtcore

netbeans-

javadoc

Average of 5

runs

Average of 5

runs

Average of 5

runs

Preprocessing and Transform 209 322 217

Computing Subtree Repeats 15 11 13

Analysis 18 30 16

Grouping and Reporting 81 30 63

 323 ms 393 ms 309 ms

The UML class model is created using the MagicDraw modeling tool. Then the
class model is exported to XMI file which is given as input to the first phase of
the tool.
Preprocessing and Transform Input: In this phase, the XMI file of the given
UML class model is parsed and the relevant information is extracted from the
XMI file which includes parameters like the name of the class, name of the
attribute with their data type, methods with their return type and its arguments,
etc. These parameters are then realized into a tree structure i.e. ModelTree
equivalent to the model keeping in mind the constructs of language.
Computing Subtree Repeats: We used the algorithm [17] to computer similar
subtrees repeating in the model tree made up of class model. The technique
is based on accepting the postfix string representation of the tree and compu-
ting subtree repeats with varying sizes in a bottom-up manner. The algorithm

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

84

has got linear time and space complexity. It reports identical subtrees in the
form: set of starting positions, length in corresponding to the input postfix
string representation.
Analysis: In this phase, the tool reports model clones with frequency 2 and
model clones with a frequency more than 2. The latter set of model clones is
inspected to state type-1 clones.
Grouping and Reporting: In this phase, the tool reports different field and
methods repeating across classes. It gives the corresponding classes too.
Finally, it clusters repeating field and methods which are present in more than
one class together with the relationship between those classes.
The tool reports the clones in a way which require subjective assessment from
a developer’s viewpoint.

5- EMPIRICAL EVALUATION

Empirical evaluation of the proposed technique is carried out on forward de-
signed and reverse engineered UML class models. One of the UML models is
forward designed i.e. created during the normal development life cycle. Such
a model helps to check the practical relevance of the proposed approach.
Moreover, no standard repository of UML models recognized by the modeling
community is available; therefore we chose class diagram created by reverse
engineering open source subject systems. It will provide a platform for the
research community to compare and verify the results in the future. We chose
the subject system from Bellon’s experiment [18] for empirical evaluation as
these systems are well known in code clone detection community. The earlier
work on model clone detection for UML models, i.e. MQlone [6] was evaluated
on different models created by 16 Master’s students. The models are not pub-
licly available. Our subject systems are open source, diverse, industrial size
and widely used for development. It may help in understanding the nature of
heterogeneous subject systems with respect to cloning. On the other hand,
MQlone was evaluated on a set of homogeneous subject systems.

Subject Systems: The forward designed model is a class model for Proxy
Server created using MagicDraw Enterprise 16.6 tool. Other subject systems
of our study are reverse engineered using the same tool. The characteristics
of the system are listed in Table 4.

Table 4 Subject system

Subject System Language Program

Size (SLOC)

#ME XMI File Size

(in KB)

eclipse-ant Java 35K 292 947

eclipse-jdtcore Java 148K 174 1445

netbeans-javadoc Java 19K 267 798

Table 5 reports the number of cloned model elements. Clones (f=2) shows the
total count of model clones with frequency 2. Clones (f>2) states model clones
repeating more than two times.

Detection and Analysis of Clones in UML Rattan, Bhatia, and Singh

85

Table 5 Clones in subject systems

Subject System

 #ME Cloned ME Clones

(f=2)

Clones

(f>2)

eclipse-ant Classes 30 00 00 00

Attributes 106 17 13 04

Methods 156 28 15 13

eclipse-jdtcore Classes 08 00 00 00

Attributes 85 00 00 00

Methods 81 00 00 00

netbeans-javadoc Classes 27 00 00 00

Attributes 66 08 05 03

Methods 174 21 17 04

Proxy-Server Classes 10 00 00 00

Attributes 33 2 2 0

Methods 62 3 00 3

The results of the evaluation are presented for the subject systems in a con-
sistent manner, reporting the model clones with high frequency. Next, clusters
of attributes/methods present in different classes are reported. Evaluation is
based on following three types of clones:

1. Type - 1: Model clones due to standard modeling/coding practice

2. Type - 2: Model clones by purpose

3. Type - 3: Model clones due to design practices

Above categories of clones are explained in detail with examples in Sec 3 –
model clone detection by example. At last, for every class model coverage is
mentioned to know the percentage of cloned model elements out of total
model elements. The evaluation of our work provides observations of the
characteristics of model clones which may help in gaining some insights from
an implementation point of view. In the earlier study [6], the clones are catego-
rized as Type A (exact model clone), Type B (modified model clone) and Type
C (renamed model clone) adapted from code clone classification (Type 1/
Type 2/ Type 3). The objective of his approach is to detect clones with varying
degree of changes, whereas our technique is aimed at identifying clones
which are actually relevant for practitioners.

5-1 CLONES IN ECLIPSE-ANT

Eclipse-ant is a freely available Java based build tool. The total number of
model elements extracted from the XMI file is 292. Table 5 shows that out of
total 30 classes, no class is repeating. There are about 17 attribute clones out
of 106 attributes and 28 method clones out of 156 repeating across the com-
plete UML class model. Fig. 8 shows a bar chart showing the repetition of at-
tributes and methods across the model. There is one field target: Target and

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

86

one method startElement (String, attributeList): void appearing seven times in
the complete class model. The field target: Target is present in 7 classes viz.
BuildEvent, BuildSmallEvent, DataTypeHandler, NestedElementHandler,
TargetHandler, Task and TaskHandler. Similarly the method startElement
(String, AttributeList): void is found in 7 classes namely, AbstractHandler,
DataTypeHandler, NestedElementHandler, ProjectHandler, RootHandler,
TargetHandler and TaskHandler. Except the class RootHandler, remaining 6
classes are in generalization hierarchy with root class AbstractHandler. Above
such set of model clones detected by the tool need to be inspected to catego-
rize them as Type-1 clones if these are the result of standard modeling/coding
practice.

Figure 8 Eclipse-ant. Figure 9 Netbeans-javadoc.

Figure 10 proxy-server.

Table 6 Type-2 and Type-3 clones in eclipse-ant

Type of Clone Type-2 Clone Type-3 Clone

Nature of relationship

across classes

Inheritance Realization No relationship

No. of clones 3 2 13

Detection and Analysis of Clones in UML Rattan, Bhatia, and Singh

87

5-1-1 Clone Clusters

The tool reported 18 clusters in eclipse-ant and categorized these clusters, as
Type -2 and Type -3 clones on the basis of the relationship between the clas-
ses in which these clusters are present. This is shown in Table 6.

Type-2 clones: Model clones by purpose

Among type-2 clones, the tool reported 3 clusters repeating across generali-
zation hierarchy in the class diagram. The first cluster consists of 2 methods
viz. characters (char [], int, int): void, startElement (String, AttributeList): void
present in AbstractHandler, DataTypeHandler, NestedElementHandler and
TaskHandler classes. In another case, there is a multilevel inheritance across
ProjectComponent, Task and UnknownElement classes. The cluster consist-
ing of three methods, i.e. execute (): void, getTaskName (): String,
maybeConfigure (): void is present in Task as well as UnknownElement class.
Another cluster made up of 3 methods, namely, characters (char [], int, int):
void, finished (): void, startElement (String, AttributeList): void is reported in
AbstractHandler and TaskHandler classes.

During analysis, we came across a couple of instances where a set of con-
crete classes realize the same interface. In one such case, a cluster of 7
methods viz. buildFinished (BuildEvent): void, buildStarted (BuildEvent): void,
messageLogged (BuildEvent): void, targetFinished (BuildEvent):
void,targetStarted (BuildEvent): void, taskFinished (BuildEvent): void,
taskStarted (BuildEvent): void is repeating in AntClassLoader, DefaultLogger,
IntrospectionHelper and XmlLogger classes. These 4 classes realize an inter-
face named BuildListener made up of just mentioned 7 methods.

Type -3 clones: Model clones due to design practices

The tool reported 13 clusters of type-3 clones repeating across classes that
do not have any relationship among them. In the first case, 1 method, i.e. log
(String, int): void and 1 field, i.e. project: Project is found in 2 classes
AntClassLoader and ProjectComponent. There is no relationship between
these classes. Similarly, 2 methods getLocation(): Location and setLocation
(Location): void and 1 field location: Location is present in BuildException and
Task classes. Another large cluster of same type, consisting of 5 fields viz.
exception: Throwable, message: String, priority: int, target: Target, task: Task
and 7 methods viz. getException (): Throwable, getMessage (): String,
getPriority (): int, getTarget (): Target, getTask (): Task, setException
(Throwable): void, setMessage (String, int): void is found in BuildEvent and
BuildSmallEvent classes. In total there are 7 such instances, but we have
listed only some of them here.

In an interesting case, there are five classes viz. DataTypeHandler,
NestedElementHandler, ProjectHandler, TargetHandler, and TaskHandler

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

88

which are the child classes of AbstractHandler parent class in the UML class
model for eclipse-ant. Different clusters of fields/methods repeat across these
five classes, but not in the parent class. E.g. one of the clusters consisting of 2
fields target: Target, wrapper: RuntimeConfigurable and three methods viz.
characters (char [], int, int): void, init (String, AttributeList): void, startElement
(String, AttributeList): void is present in DataTypeHandler and TaskHandler
class. Another similar cluster comprising of two methods, i.e. init (String,
AttributeList): void, startElement (String, AttributeList): void and one field tar-
get: Target present in DataTypeHandler, NestedElementHandler,
TargetHandler and TaskHandler classes. Similarly, among the same five sub-
classes, a cluster of 2 methods, i.e. init (String, AttributeList): void and
startElement (String, AttributeList): void is present.

Another similar cluster consists of 1 field and 3 methods existing in
DataTypeHandler, NestedElementHandler and TaskHandler classes. In total
we traced 6 such instances in which the duplication is prevalent across sub-
classes of the same parent class.

5-1-2 Coverage

In total, of 292 model elements (# ME) in eclipse-ant, we detected that 45 out
of it are clones. These may be attributes/operations in a class. So clone cov-
erage is total cloned elements vs. total elements, i.e. 15.4 %.

5-2 CLONES IN NETBEANS-JAVADOC AND ECLIPSE-JDTCORE

The technique has been applied to two systems, namely, netbeans-javadoc
and eclipse-jdtcore with 267 and 174 model elements. Primarily, we want to
know the degree of cloning in the form of individual attributes/methods and
clusters in UML class models. Netbeans-javadoc has 29 cloned ME consisting
of 8 attributes and 21 methods. Eclipse-jdtcore has no attribute/method, re-
peating out of 174 model elements as shown in Table 5. Fig. 9 shows the fre-
quency of cloned model elements for netbeans-javadoc. 75 % of model ele-
ments in netbeans-javadoc are repeating two times. There is one attribute
serialversionUID which is repeated across 11 classes. Individual attrib-
utes/operations have relevance during forward engineering as we generate
code from mode as well as during reverse engineering as we generate model
from the code. Though these types of clones seem small in the first ob-
servance, these signify standard modeling/coding practice, thus classified as
Type-1 clones.

Clone clusters

In total, 6 clone clusters are detected. As shown in Table 7, all these clusters
are present across classes where there is no relationship between the clas-
ses. We list some of them here. One clone cluster has 3 methods, namely,
getAdditionalBeanInfo (): BeanInfo, getBeanDescriptor (): BeanDescriptor,
getIcon (int): Image is present in 4 classes viz.

Detection and Analysis of Clones in UML Rattan, Bhatia, and Singh

89

ExternalJavadocExecutorBeanInfo, GlobalLocalFileSystemBeanInfo,
JavadocTypeBeanInfo and StdDocletTypeBeanInfo. Another large cluster
comprising of 2 fields, namely, docletS: StdDocletType and javadocS:
ExternalJavadocSettingsService and 5 methods getDestinationDirectory ():
String, isStyle1_1 (): boolean, loadChoosenSetting (): void, setBooleanOption
(Boolean, String, list): void, setStringOption (String, String, List): void is re-
peating in classes ExternalOptionListProducer and OptionListProducer.

Table 7 Type-2 and Type-3 clones in netbeans-javadoc

Type of Clone Type-2 Clone Type-3 Clone

Nature of relation-
ship across classes

Inheritance Realization No relationship

No. of clones 00 00 06

In two particular cases, we came across four classes, namely,
ExternalJavadocExecutorBeanInfo, GlobalLocalFileSystemBeanInfo,
JavadocTypeBeanInfo, StdDocletTypeBeanInfo where all the methods
getAdditionalBeanInfo (): BeanInfo [], getBeanDescriptor (): BeanDescriptor,
getIcon (int): Image repeat. In another example, a group of 1 field, viz., bun-
dle: ResourceBundle and 1 method, viz., getBundledString (String): String is
present in 2 classes i.e. CommonUtils and ResourceUtils. We observed upon
analysis of the results, 4 classes ExternalJavadocExecutorBeanInfo,
GlobalLocalFileSystemBeanInfo, JavadocTypeBeanInfo and
StdDocletTypeBeanInfo are exactly same. Each class is made up of same 3
methods as mentioned earlier. Another case is CommonUtils and
ResourceUtils with similar contents.

Coverage

We get 11 % coverage in case of netbeans-javadoc. We detected 29 cloned
ME in the total of 267 model elements.

5-3 CLONES IN PROXY-SERVER CLASS DIAGRAM

The proxy server class diagram is the forward designed class model. This
class diagram is made up of 10 classes and 1 interface. In total we have 33
fields and 62 methods in the model. Fig. 10 shows a bar chart showing the
repetition of attributes and methods across the model. To analyze the type-1
clones, we came across 2 fields viz. SerialVersionUID: long and LOGGER:
logger which is repeating in 2 classes. As per our classification, these fields
are the result of standard modeling practice.

5-3-1 Clone Clusters

In this class diagram, the tool detected 2 clusters. First cluster is made up of
three methods, namely onRequest (HttpServletRequest,
HttpServletResponse, URL): void, onRemoteResponse (httpMethod): void

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

90

and onFinish (): void repeating in 5 classes MimeTypeChecker, HostChecker,
MethodsChecker, HostNameChecker, RequestTypeChecker and 1 interface
named ProxyCallBack. This is the result of classes implementing the same
interfaces, thus having similar set of methods. These types of clones show
behaviors in model emerged from the careful application of useful design par-
adigms and classified as a type-2 clones.

As shown in Table 8, there is another cluster made up of 2 methods
onRemoteResponse (httpMethod): void and onFinish (): void which is present
in the class HTTPProxy in addition to all the five classes mentioned earlier in
the first cluster. Since HTTPProxy class has no relationship with any other
class, thus categorized as type-3 clone.

Table 8 Type-2 and Type-3 clones in proxy-server

Type of Clone Type-2 Clone Type-3 Clone

Nature of relationship

across classes

Inheritance Realization No relationship

No. of clones 00 01 01

5-2-2 Coverage

We found that among 10 classes, 33 fields and 62 methods there is no class
repeating, 2 fields and 3 methods are repeating. So there are 5 cloned ME out
of 105 ME. We get around 5 % clone coverage.

6- RELATED WORK

We observed that research in code clone detection is a well established field
[3]. But model clone detection is still at the stage of infancy. We have not men-
tioned the papers on code clone detection in this section. The reader is ad-
vised to go through systematic survey by Rattan et al. [3]. In section 6.1, we
mention the studies of model clone detection. The comparison of the pro-
posed work with an existing tool MQlone is presented in 6.2.

6-1 MODEL BASED CLONE DETECTION

Liu et al. [19] gave an algorithm to detect duplications in UML sequence dia-
grams by converting 2-dimensional sequence diagram to a one dimensional
array. Then a suffix tree is made from the transformed array. The technique
detected common prefixes from the suffix tree. On average, 14% duplication
is reported in sequence diagrams.

Most of the techniques for model clone detection exist for Matlab/Simulink
models. Deissenboeck et al. [1] broke new ground by giving an algorithm to
detect clones in graph based Matlab/Simulink models. They convert the model
to labeled multi-graph. Maximum weighted bipartite matching algorithm is ap-
plied in a breadth first fashion to detect clone pairs. Lastly, repetitive substruc-
tures are clustered. The study concludes that one third of model elements are

Detection and Analysis of Clones in UML Rattan, Bhatia, and Singh

91

affected by detecting clones in an industrial case study of automotive domain.
Deissenboeck et al. [10] explored some challenges being faced in detection of
relevant clones in Matlab/Simulink models. The study gives useful insights in
addressing those problems too. Pham et al. [20] developed the tool ModelCD
to detect clones in Matlab/Simulink models based on two algorithms viz.
escan and ascan. escan is used to detect exact matching using an advanced
graph matching technique called canonical labeling and ascan is used to de-
tect approximate clones by counting vector of a sequence of nodes and edg-
es’ labels.

Hummel et al. [11] presented an incremental algorithm for model clone detec-
tion. A directed multigraph is made from the Matlab/Simulink model followed
by labeling of relevant edges and blocks. For all subgraphs of the same size,
a clone index is calculated. The canonical label of all subgraphs in the clone
index is calculated and hashing of similar labels is done.

Deissenboeck et al. [1], [10], Pham et al. [20] and Hummel et al. [11] applied
graph isomorphism algorithms for clone detection in Matlab/Simulink models.
The underlying approach is transforming the model to a graph structure. This
is in contrast to our approach; as graph based techniques do not work for
UML models. Transforming a UML class diagram to a graph will make the
classes as nodes of the graph. These nodes contain the majority of the infor-
mation and any graph based approach will not explore these nodes for simi-
larity. Störrle [6] analyzed a number of UML models to support this point of
view. Our work converts the classes of UML model into a tree. Then the dupli-
cate subtrees are identified. Our approach differs in principle to Deissenboeck
et al. [1], [10], Pham et al. [20] and Hummel et al. [11].

Alalfi et al. [9] customized the code clone detection techniques to detect near
miss clones in Matlab/Simulink models. The technique works by transforming
the graph-based models to normalized text form and detects clones at differ-
ent levels of granularity i.e. entire model, sub-system and block level. The au-
thors classified the clones as type-1 (exact) model clones, type-2 (renamed)
model clones and type-3 (near-miss) model clones.

There are several studies [21], [22] carried out to detect and visualize differ-
ences between versions of UML diagrams. Stephan and Cordy [23] explored
various model comparison techniques in a state of the art survey. Rattan et al.
[24] presented a technique to detect higher level similarities in source code
and between UML models. The technique uses principal component analysis
and latent semantic indexing.

An empirical study is carried out by Rattan et al. [25] which showed significant
cloning in Matlab/Simulink models. The study used ConQAT [26] to highlight
useful patterns of clones in models ranging from 218 blocks to 73888 blocks.
Rattan et al. [27] proposed an approach to detect model clones based on tree
comparison.

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

92

Stephan et al. [28] identified six qualitative areas for evaluation of different
Simulink model clone detection approaches viz. relevance and recall, perfor-
mance, clone detection type, user-interaction required, adaptability, and model
pattern granularity. In another study by Stephan et al. [29] on evaluation of
model clone detection approaches, artificial clone pairs are created using mu-
tation analysis and injected into the model base of Matlab/Simulink models
under study.

6-2 COMPARISON WITH MQlone

Our technique of clone detection starts by exporting a UML class model to an
XMI file using the inbuilt facilities of the CASE tool. The core of our technique
is the construction of a labeled, ranked tree by carefully mapping the elements
parsed from the XMI file to the tree representation such that attribute model
elements and method model elements are represented as subtrees. The algo-
rithm to detect duplicate subtrees is applied, which yields the sets of starting
positions of repeating subtrees and their lengths. To detect exact and mean-
ingful clones as per the proposed classification, post-processing needs to be
applied. The algorithms to calculate frequency of model clones, grouping and
clustering are applied to classify the clones. In contrast to our approach,
Störrle’s MQlone [6], a first of its kind tool to detect clones in UML domain mod-
els is based on model querying. The UML model is exported to an XMI file
using any of the UML modeling tools. XMI files are transformed to Prolog files
in which clone detection is carried out based on model matching. The result is
the prioritized list of matched model elements with their similarity.

In his study, the clones are categorized as Type A (exact model clone), Type B
(modified model clone) and Type C (renamed model clone) adapted from
code clone classification (Type 1/ Type 2/ Type 3). What’s unique about our
approach is the classification of model clones, i.e. Type-1 (model clones due
to standard modeling/ coding practice), Type-2 (model clones by purpose) and
Type-3 (model clones due to design practices.

We understand that our approach will be first of its kind to identify exact and
meaningful model clones for development and maintenance purposes. More-
over, we are performing the analysis of forward designed as well as reverse
engineered UML class models. Reverse engineered UML class models are
open source subject systems which provide the platform for the research
community to compare and evaluate the results in the future. These systems
have been extensively used in field of code clones to detect, compare and to
know the impact of code clones on software quality [3]. On the other hand,
MQlone is evaluated on different UML models created by 16 Master’s students.
The best model with no natural clones is selected and seeded with artificial
clones to emulate Type A, B, and C model clones. Recall and Precision is cal-
culated based on the seeded clones. Different similarity heuristics based on
element names and element index are compared on the basis of precision,
recall and number of false positives from the subset of detected clones.

Detection and Analysis of Clones in UML Rattan, Bhatia, and Singh

93

MQlone is applied to different kinds of UML domain model. But our work is fo-
cused on detection of exact and meaningful clones in the UML class models
at different levels of granularity.

Indeed there is no standard definition of model clone in research community.
In code clone domain, the definition of clone is task oriented and dependent
on detection technique [30]. Human judgment plays the key role in categoriz-
ing what is and is not a clone [31]. The findings of our work in terms of detect-
ed clones can be more closely inspected by researchers and practitioners to
decide how to deal with them and improve the software design in the future.

7- DISCUSSION

We start this section with a discussion on the findings of the empirical evalua-
tion. The tool reports set of model clones with a frequency more than 2. To
find type-1 clones, an inspection is carried out by the authors in this set of
model clones. We support our point of view using Stephan’s [28] key parame-
ter for model comparison, i.e. “ability to identify recurring patterns using a
combination of manual inspection and model visualization”.

As an application of the proposed technique in Java programming practice, if
a class overrides equals method, then it must override the hashcode method
as well. One can confirm this by inspecting the output of the tool as follows -
1) Set of classes in which equals method repeat. 2) Set of classes in which
hashcode method repeats. 3) Compare the two sets for difference.

Thus, one can identify the classes which are not following the above standard
programming practice.

We are keen to gain insights into type-3 clones reported by the tool as these
will lead to improvement in the design of the system. For instance, in eclipse-
ant, we came across interesting clusters repeating in a set of classes. Though
these classes inherit the same parent class, but the repetitive clusters are ab-
sent in their parent class (As per our interpretation, one reason for the pres-
ence of such clusters may be the absence of support of multiple inheritance in
Java). We believe that if a UML class model is designed first, then such
clones will be detected at an early stage before they appear in an implementa-
tion.

Importantly, the tool is able to report model clones of different granularities
across the model. In another application, test cases for white box testing are
generated from models and most of the logical errors are traced back to de-
sign. Therefore, if designs are free from clones then test cases can be de-
signed effectively and efficiently. In a nutshell, the classification and detection
of model clones at different levels of granularity is the evidence of the useful-
ness of the proposed approach.

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

94

7-1 THREATS TO VALIDITY

There are several threats to the validity of our study. One potential threat is
the definition of term ‘model clone’ and its types. In the field of code clones,
the term clone is still searching for the proper definition. A legacy continued in
UML models. We have defined the term model clones considering the ele-
ments of a class model. But we are of the view that model clones can be de-
fined in other ways also [32].

An external threat to validity is the selection of subject systems for empirical
evaluation. Although we chose forward designed and open source reverse
engineered systems, we do not know whether these sample systems are rep-
resentative. There is no standard repository of UML models and real world
industrial systems are not available due to different proprietary reasons.

We should also be aware that our tool is based on parsing the XMI file corre-
sponding to the UML class model. Various UML modeling tools export the
model to XMI file with varying structure and format. During parsing and con-
struction of the tree, it is difficult to generalize this step for all the modeling
tools. It is a definite challenge seeing the number of modeling tools in the
market.

We are confident to mitigate the threat to validity regarding classification of
clones to some extent. Our classification of model clones relies on the under-
lying nature of object oriented modeling and do not perceive UML as a nota-
tion only.

8- CONCLUSIONS AND FUTURE WORK

Code clones are known to cause several problems in software development
and evolution. With the advent of model driven development, clones in UML
models will pose similar challenges. Moreover, model clones will propagate to
source code, too. Consequently, such a tool to detect clones in UML models is
required. In this paper, we have developed a technique to detect clones in
UML class models. The technique accepts the XMI file of a UML class model
as input. The core of our technique is the construction of a labeled, ranked
tree by carefully mapping the elements parsed from the XMI file to the tree
representation. The duplicate subtrees are grouped and clustered with the aim
to detect exact and meaningful clones. The tool is able to detect clones at dif-
ferent levels of granularity i.e. single attributes/methods of the class, clusters
of attributes/methods and complete class in the UML model. A new classifica-
tion of model clones with the aim to gain some useful insights in the software
modeling process is another highlight of the proposed work. The technique
has been empirically evaluated on open source reverse engineered and for-
ward designed systems. We believe that the results of the tool are accurate
and relevant for practical purposes and demand further investigation.

Currently, the tool is stand alone in nature and detects clones in UML class

Detection and Analysis of Clones in UML Rattan, Bhatia, and Singh

95

models only. In the future, work can be carried out to know how type-3 clones
can be used to improve the design. UML model refactoring has emerged as
an allied area similar to code refactoring. Detection of patterns for model re-
factoring with the help of our model clone detection approach together with
semantic preservation may help in improving the design and structure of the
UML class model. We plan to carry such work in future. Further, we are plan-
ning to tailor the current technique to apply to other UML models. We hope
that the research community would come forward and create an online reposi-
tory of UML models so that the results of one researcher can be useful to the
community. To standardize the term model clone and its types is another
thrust area for modeling community. We understand that different UML models
have individual features which should be used to develop effective clone de-
tection techniques. Mapping of UML modeling constructs from syntactic to
semantic domain will help in detecting semantic model clones.

REFERENCES

[1] F. Deissenboeck, B. Hummel, E. Juergens, B. Schätz, S. Wagner, J-F
Girard, S. Teuchert, "Clone Detection in Automotive Model Based Devel-
opment," International Conference on Software Engineering, pp. 603-612,
ACM, New York, 2008.

[2] V. Kulkarni, S. Reddy, A. Rajbojh, "Scaling up Model Driven Engineering –
experience and lessons learnt," MODELS Conference, pp. 331-345, ACM
New York, 2010.

[3] D. Rattan, R. Bhatia, M. Singh, "Software Clone Detection: A Systematic
Review " Information and Software Technology 55 (7), 1165-1199, 2013.

[4] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, "Do code clones
matter," International Conference on Software Engineering, pp. 485- 495,
ACM, New York, 2009.

[5] L. Jiang, Z. Su, E. Chiu, "Context-based detection of clone-related bugs,"
ESEC-FSE, pp. 55-64, ACM, New York, 2007.

[6] H. Störrle, "Towards Clone Detection in UML Domain Models," Software
and Systems Modeling 12 (2), 307-329, 2013.

[7] OMG: OMG Unified Modeling Language (OMG UML), Superstructure,
V2.4.1 (formal/2011-08-05). Tech. rep., Object Management Group, Feb
2011.

[8] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-
oriented modeling and design. Addison Wesley, 1991.

[9] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, A. Stevenson, "Model

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

96

are Code too: Near Miss Clone Detection for Simulink Models," Interna-
tional Conference on Software Engineering, pp. 295-304, IEEE Computer
Society, 2012.

[10] F. Deissenboeck, B. Hummel, E. Juergens, M. Pfaehler, B. Schätz, "Model
Clone Detection in Practice," International Workshop on Software Clones,
pp. 57-64, ACM, New York, 2010.

[11] B. Hummel, E. Juergens, D. Steidl, "Index based Model Clone Detection,"
International Workshop on Software Clones, pp. 21-27, ACM, New York,
2011.

[12] S. Livieri, Y. Higo, M. Matsushita, K. Inoue, "Analysis of the Linux Kernel
Evolution using Code Clone Coverage," Mining Software Repositories,
ACM New York, 2007.

[13] A. M. Fernández-Sáez, M. R. V. Chaudron, M. Genero, I. Ramos, "Are
forward designed or reverse-engineered UML diagrams more helpful for
code maintenance?: a controlled experiment," Conference on Evaluation
and Assessment in Software Engineering, pp. 60-71, ACM New York,
2013.

[14] XMI Guide Version 2.4.1. Tech. rep., Object Management Group.
http://www.omg.org/spec/XMI, document number formal/ 2011-08-09,
2011.

[15] N. Göde, B. Hummel, E. Juergens, "What Clone Coverage Can Tell,"
International Workshop on Software Clones, pp. 90-91, IEEE Computer
Society, 2012.

[16] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language
Reference Manual. Addison Wesley, 1999.

[17] M. Christou, M. Crochemore, T. Flouri, C. S. Iliopoulos, J. Janoušek, B.
Melicha, S. P. Pissis, "Computing all Subtree Repeats in Ordered Trees,"
Inform. Process. Lett. 112 (24), 958-962, 2012.

[18] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo, "Comparison and
Evaluation of Clone Detection Tools," IEEE Trans. Softw. Eng. 33(9), 577-
591, 2007.

[19] H. Liu, Z. Ma, L. Zhang, W. Shao, "Detecting Duplications in Sequence
Diagrams based on Suffix Tree," Asia Pacific Software Engineering Con-
ference, pp. 269-276, IEEE Computer Society, 2006.

[20] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, T. N. Nguyen,
"Complete and Accurate Clone Detection in Graph-based Models," Inter-

Detection and Analysis of Clones in UML Rattan, Bhatia, and Singh

97

national Conference on Software Engineering, pp. 276-286, IEEE Com-
puter Society, 2009.

[21] U. Kelter, J. Wehren, J. Niere, "A generic difference algorithm for UML
models," Pohl, K., (ed.) Proceedings of National Germ. Conference Soft-
ware-Engineering 2005 (SE’05), no. P-64. Lecture Notes in Informatics,
Gesellschaft für Informatik e.V., pp. 105–116, 2005.

[22] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, P. Zave, "Matching
and merging of statecharts specifications," International Conference on
Software Engineering, pp. 54–64, IEEE Computer Society, 2007.

[23] M. Stephan, J. R. Cordy, "A Survey of methods and applications of model
comparison," Tech. Rep. #2011-582, Queen’s University, School of Com-
puting, 43 pp., 2011.

[24] D. Rattan, R. Bhatia, M. Singh, "Detecting High Level Similarities in
Source Code and Beyond" International Journal of Energy, Information
and Communications 6(2), 1-16, 2015.

[25] D. Rattan, R. Bhatia, M. Singh, "An Empirical Study of Clone Detection in
MATLAB/Simulink Models," International Journal of Information and
Communication Technology (Accepted).

[26] E. Juergens, F. Deissenboeck, B. Hummel, "CloneDetective – A Work-
bench for Clone Detection Research," International Conference on Soft-
ware Engineering, pp. 603- 606, ACM, New York, 2009.

[27] D. Rattan, R. Bhatia, M. Singh, "Model Clone Detection based on tree
comparison," Indian Conference, pp. 1041-1046, IEEE CS, 2012.

[28] M. Stephan, M. H. Alalfi, A. Stevenson, J. R. Cordy, "Towards Qualitative
Comparison of Simulink Model Clone Detection Approaches," Internation-
al Workshop on Software Clones, pp. 84-85, IEEE Computer Society,
2012.

[29] M. Stephan, M. H. Alalfi, A. Stevenson, J. R. Cordy, "Using Mutation Anal-
ysis for a Model- Clone Detector Comparison Framework," International
Conference on Software Engineering, pp. 1261-1264, IEEE Computer
Society, 2013.

[30] C. K. Roy, J. R. Cordy, "A Mutation/ Injection-based Automatic Framework
for Evaluating Clone Detection Tools" Mutation'09, pp. 157-166, IEEE
Computer Society, 2009.

[31] A. Walenstein, N. Jyoti, L. Junwei, Y. Yun, A. Lakhotia, "Problems creating
task-relevant clone detection reference data," Working Conference on

Int. J. of Software Engineering, IJSE Vol. 8 No. 2 July 2015

98

Reverse Engineering, pp. 285-29, IEEE Computer Society, 2003.

[32] N. Gold, J. Krinke, M. Harman, D. Binkley, "Issues in Clone Classification
for Data flow Languages," International Workshop on Software Clones,
pp. 83-84, ACM, New York, 2010.

Detection and Analysis of Clones in UML Rattan, Bhatia, and Singh

99

