

Exploiting Patterns and Tool Support for
Reusable and Automated Change Support

for Software Architectures

Fawad Khaliq(1), Aakash Ahmad(2),, Onaiza Maqbool(3),
Pooyan Jamshidi(4),, and Claus Pahl(5)

(1) Department of Computer Science.Quaid-i-Azam University (Pakistan)
E-mail: fawad.khaliq@qau.edu.pk

(2) School of Electrical Engineering and Computer Science.National University of

Sciences and Technology (Pakistan)

E-mail: aakash.ahmad@seecs.edu.pk
(3) Department of Computer Science.Quaid-i-Azam University (Pakistan)

E-mail: onaiza@qau.edu.pk
(4) Irish Centre for Cloud Computing and Commerce.Dublin City University (Ireland)

E-mail: pooyan.jamshidi@computing.dcu.ie
(5) Irish Centre for Cloud Computing and Commerce.Dublin City University (Ireland)

E-mail: claus.pahl@computing.dcu.ie

ABSTRACT

Lehman’s law of continuing change implies that software must continually
evolve to accommodate frequently changing requirements in existing systems.
Also, maintainability as an attribute of system quality requires that changes
are to be systematically implemented in existing software throughout its
lifecycle. To support a continuous software evolution, the primary challenges
include (i) enhancing reuse of recurring changes; and (ii) decreasing the
efforts for change implementation. We propose change patterns and
demonstrate their applicability as reusable solutions to recurring problems of
architectural change implementation. Tool support can empower the role of a
designer/architect by facilitating them to avoid labourious tasks and executing
complex and large number of changes in an automated way. Recently, change
patterns as well as tool support have been exploited for architecture evolution,
however; there is no research to unify pattern-driven (reusable) and tool-
supported (automated) evolution that is the contribution of this paper. By
exploiting patterns with tool support we demonstrate the evolution of a peer-
to-peer system towards client-server architecture. Evaluation results suggest
that: (i) patterns promote reuse but lack fine-granular change implementation,
and (ii) tool supports automation but user intervention is required to customise
architecture change management.

Keywords: Automated Evolution, Change Patterns, Software Architecture, Soft-
ware Evolution.

Exploiting Patterns and Tool Support Khaliq, Ahmad, and Maqbool

35

1- INTRODUCTION

Evolution of software systems is a continuous phenomenon as a
consequence of changes in system requirements and operational
environments [1]. Lehman’s law of continuing change states that an E-type
system that is any real-world software must be continually adapted or it
becomes progressively less satisfactory [2]. In addition, maintainability; i.e.,
the effectiveness with which changes can be implemented to support
evolution represents an attribute of software quality as per the ISO/IEC
25010:2011 quality model [3]. Therefore, to accommodate frequently changing
requirements; continuous evolution is required to ensure quality and
evolvability of existing software [4]. However, to support continuous evolution;
an important decision lies in selection of an appropriate software
representation such as code vs design vs configurations for change
implementation.

Architecture1 represents the blueprint of a software system by abstracting low-
level and implementation specific details. For example, the source-code mod-
ules and their interactions can be abstracted with higher-level representations
such as architectural components and their connectors [5, 6]. Source code
changes in general proved effective for software refactoring as corrective type
changes, while architectural evolution primarily aims at perfective and adap-
tive changes2 [5]. Moreover, the component-connector architectural represen-
tations provide the stakeholders, designers, and developers with a system
overview, known as global structure for systematic modelling, development,
and evolution of software [6]. Once the decision is reached to exploit the ar-
chitecture as the driver for software evolution, we are faced with two distinct
challenges on (i) how to capitalise existing knowledge and expertise that can
be reused to tackle recurring evolution [7], and (ii) how to automate and cus-
tomise the application of such reuse knowledge [8] – both introduced below.

The concept of applying reuse-knowledge or best practices to design and de-
velop software emerged from the Gang-Of-Four (GOF) design patterns [9].
After more than two decades of research and practice, design patterns have
now matured to establish various catalogues and languages as an integral
part of software development processes. In contrast, the recent concepts of
evolution styles or change patterns as the artifacts of evolution-specific
knowledge are innovative but relatively immature [6, 19, 11]. Some industrial
[13, 14] as well as academic studies [4, 7, 12] on software evolution have
highlighted the growing needs to develop processes, frameworks and patterns
that exploit reuse-knowledge to support design and architectural evolution.
Specifically, a change pattern packages together changes, constraints, and
architectural descriptions as evolution-knowledge that can be reused during
change implementation [11, 26].

1 ISO/IEC/IEEE 42010 Systems and software engineering is a standard for Architec-
ture description of software systems.

2 In literature [4, 5] the terms evolution and change are virtually synonymous and of-
ten used interchangeably. However, a distinction must be maintained – a collection of
changes on architectural/software description cause their evolution

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

36

Automation of change implementation enables the execution of complex tasks
such as frequent addition or removal of a significant number of component
and connectors that may prove error-prone and time-consuming with manual
efforts [8]. In addition, customisation allows designers/architects to incorpo-
rate their decisions such as specifying the evolvable and preservable struc-
tures or selecting/discarding specific changes on software architecture. Tool
support with necessary intervention and customisation enables importing the
source and exporting the evolved architecture models and support necessary
steps that enable the evolution of source model [8].

In this paper, we aim to unify reusability and automation of changes in soft-
ware architecture evolution process. The existing research lacks any solutions
that integrates change patterns with necessary tool support during architec-
tural evolution [6, 8]. The state of the art on architectural evolution research
highlights the needs for solution(s) that supports an empirical discovery of
change patterns, known as reuse knowledge acquisition and systematic ap-
plication of discovered patterns to evolve software architectures, known as
reuse knowledge application [4, 7, 12]. Therefore, considering change pat-
terns as artifacts of evolution specific knowledge; our proposed contributions
focuses on:

- Exploiting change patterns as artifacts of evolution specific knowledge
with tool support to facilitate reusable and automated change manage-
ment for software architectures.

- Enabling user intervention in the evolution process to customise and
guide architectural change management.

The remainder of this paper is organised as follows. Section 2 provides re-
search challenges and overview of the solution. Section 3 presents a meta-
model of pattern-driven and tool-supported architectural change management
and introduces the change pattern catalogue. Section 4 demonstrates pattern-
based reuse and prototype support for architecture evolution. Section 5 pre-
sents evaluations, lessons learnt and validity threats. Section 6 overviews
related research. Section 7 concludes the paper.

2- PRESEARCH CHALLENGES AND SOLUTION OVERVIEW

In this section, first we discuss the primary research challenges (in Section
2-1) that follows an overview of the proposed solution that address the chal-
lenges (in Section 2-2).

2-1 CHALLENGES

Based on the progress of research on software architectural evolution, we
have identified two primary challenges as below.

Exploiting Patterns and Tool Support Khaliq, Ahmad, and Maqbool

37

Challenge I - Integrating Reuse Knowledge and Tool Support in Architecture
Evolution Process

Reuse knowledge in terms of change patterns allows the designers and archi-
tects to leverage the existing expertise and strategies to tackle recurring prob-
lems during architectural evolution. Recently, patterns as artifacts of reuse
[19] or tool support to enable automation [22] have been exploited for archi-
tecture evolution, however; there is no research to unify pattern-driven and
tool-supported architectural evolution. The lack of tool integration in pattern-
based architectural evolution process is mainly due to economic and technical
challenges [21, 22]. Specifically, the evolution of industrial scale software
architecture is driven by timely and economically efficient change
implementation that often results in automated but ad-hoc and once-off
solutions [19]. Moreover, complexities like continuous pattern discovery,
appropriate pattern selection, pattern evaluation and its application during
architecture evolution process poses a variety of challanges for developing a
comprehensive tool support for pattern-based architectural evolution [8].

Challenge II - Customisation and User Intervention during Architecture Evolu-
tion

Another issue in architectural evolution is the customisation of the architectur-
al evolution process as per the requirements specification of architectural el-
ements and proposed changes on them. There is a need to facilitate the de-
signers/architects with incorporation of their decisions, preferences and exper-
tise to guide the architecture evolution process. In this context, a complete
automation is desirable, however; both evolution and architecting are intellec-
tual processes that require human intervention and collective decision rather
than pure automation of change execution [4, 8].

In addition to the challenges above, it is vital to mention another issue that lies
with a continuous discovery of architecture evolution knowledge that must be
frequently integrated in the architectural evolution process. The challenges
and solution for a continuous discovery of architectural evolution knowledge
have been discussed in our previous research [25]. In this paper, we outline
the primary research problem as:

How to unify patterns and tool support that incorporates user intervention in
the evolution process to enable reusable and automated architectural change

management.

2-2 OVERVIEW OF PROPOSED SOLUTION

In order to address the outlined challenges above, we provide an overview of
the proposed solution as illustrated in Figure 1. In contrast to the existing re-
search on evolution styles [6] and change patterns [19], in the proposed solu-
tion we exploit the existing change patterns from [11, 25] for reusable and au-
tomated evolution of software architectures. Considering the context of Figure
1 as the proposed solution, the pattern collection (P1, P2, P3) supports multi-
ple changes (C1, C2) as addition or removal of architectural components and
connectors causing an incremental evolution of architecture models (A1, A2,

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

38

A3). A collection of tool elements (T1, T2, T3) enable the necessary automa-
tion. The role of an architect or designer is empowered by selecting the
patterns and applying the tool support to enable incremental changes to
evolve architectures in a reusable and automated fashion.

Assumptions and Contributions of Solution: This research provides a sig-
nificant extension to our previous work on automated empirical discovery of
patterns by mining architecture change logs [11, 25]. In the present work, we
assume the existence of change pattern collection such as pattern languages
or pattern catalogues [15, 19]. The contribution of this research is to exploit
existing change patterns [15, 25] to automate and customise change support
for software architectures. We demonstrate pattern-based reuse and tool-
supported automation by evolving a peer-to-peer appointment system towards
client-server architecture. In addition, by supporting different parameters such
as specification of architectural constraints or change operations, the tool fa-
cilitates necessary user intervention to customise architectural changes. The
lack of comprehensive case studies from industrial-scale systems for evalua-
tion represents a validity threat to the solution. As part of our ongoing re-
search, acquisition of industrial data for evaluation defines futuristic research.

3- MODELING PATTERN BASED AND TOOL SUPPORTED
EVOLUTION

Modeling is the first step towards supporting evolution as it identifies and
represents the necessary elements, their composition and interrelations.

Figure 1 Overview of Pattern-Driven and Tool-Supported Architectural Changes.

Exploiting Patterns and Tool Support Khaliq, Ahmad, and Maqbool

39

Figure 2 provides a meta-model for pattern-based and tool-supported
architectural evolution. Based on Figure 2, we discuss the architecture model
in Section 3-1 with details of the pattern model in Section 3-2 and evolution
tool in Section 3-3. Architecture model and change pattern as a concept as
well as implementation remain independent of any specific tool or platform. In
the context of Figure 2, any specific tool or technology could only use
architecture and pattern model by importing/exporting them but could not
change their representation. The elements and concepts presented in this
section are utilised throughout the paper.

Figure 2 Model Elements and their Interrelationships.

3-1 ARCHITECTURE MODEL

It provides architectural specification in terms of the individual elements that
are composed and interconnected to represent the overall structure of soft-
ware. In Figure 2, the architectural model is specified with architectural ele-
ments named Components as computational elements of system along with
their Connectors for component interconnections. This description is based on
the well-known view of the model, the so called component and connector
(C&C) architectural view [16]. Furthermore, components are composed of
Ports that either provide (a.k.a. source port) or require (a.k.a. sink port) some
functionality – a component’s point-of-interaction. In contrast, a connector is
composed of Endpoint that provides the binding among the provider and re-

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

40

quester ports. As modeled in Figure 2, by abstracting the individual changes
in patterns, the operations on architectural model are constrained to preserve
composition of elements. For example, constraints ensure that whenever a
component is added, its corresponding port must also be added to ensure
integrity of architectural composition. Based on the model from Figure 2, we
discuss a concrete example of the architecture model in Figure 3 that is also
used as a running example.

Figure 3 Component and Connector Architectural View for P2P-AS System.

Running Example - Architectural view of Peer-to-Peer Appointment System
(P2P-AP) presents architectural description as a partial view in Figure 3 A) as
well as architecture model in Figure 3 B). Specifically, Figure 3 B) represents
three distinct components (Appointment_Request, Appointment_Schedule, Authenti-
cate_Request) and three connectors (getAppointment, getAuthentication, getAuthenti-
cationList) with appropriate ports and endpoints respectively. For space rea-
sons, we abstract system-level details such as user interfacing and data re-
trieval. We primarily focus on the C&C architectural view as Figure 3 B). Ap-
pointments_Request gets appointments from Appointment_Schedule component.
Both Appointment_Request and Appointment_Schedule components require Authenti-
cate_Request component for authenticating requests before issuing appoint-
ment schedules. We utilise the P2P-AP architectural representation from Fig-
ure 3 as a source model and demonstrate pattern and tool support for its evo-
lution in subsequent sections.

Exploiting Patterns and Tool Support Khaliq, Ahmad, and Maqbool

41

The representation in Figure 3 B) as architecture model presents a graphical
view of the interconnected components, while an architectural description in
Figure 3 A) also detailed later provides a suitable notation to formally specify
the architecture. It is vital to distinguish between, (i) a model that is a graphical
view for human comprehension such as designer/architect, while (ii) descrip-
tion represents a suitable/formalised format for machine representation or
tool-based manipulation.

3-2 CHANGE PATTERN

It is composed of Operators that specify changes as addition, removal, and
modification of architectural components and connectors. It is vital to mention
that in the evolution model (cf. Figure 2) there is no direct relation between
operators and architecture elements as operators cannot be directly applied to
architecture. In traditional change implementation techniques, when individual
operators are applied to an architecture model this is referred to as change
primitives [5]. In contrast to primitives, change patterns abstract the lower-
level and ad-hoc changes into generic and reusable changes. Moreover, the
constraints specify a set of conditions as precondition, invariant, post-
conditions that must be enforced through a pattern before, during and after
change implementation. Constraints are vital to preserve certain conditions or
architectural structure during and after change execution such as a compo-
nent must contain one or more port. Based on the elements in Figure 2, a
change pattern is modeled as: a constrained composition of change opera-
tionalisation on the architecture model. A change pattern is a generic and re-
peatable solution to frequently occurring architecture evolution problems. Ex-
amples of change patterns are provided in Table 1. The relation between ar-
chitecture model and change pattern is expressed as: Change Pattern is Ap-
pliedTo Architecture Model, so that pattern-based architecture evolution can be
supported.

A) A Catalogue of Architecture Change Patterns
The catalogue represents a collection of patterns ready for selection and re-
use. We followed the guidelines in [17] to develop a pattern template present-
ed in Table 1. The seven patterns presented have been discovered by inves-
tigating architecture change logs as histories of architecture evolution [11, 25].
By investigating logs, we discovered recurring changes with specific proper-
ties as potentially reusable patterns with additional details in [25]. In Table 1,
we only provide the necessary elements of the template with extended details
of an individual pattern in Table 2. Pattern elements include: (1) Pattern Name
that provides unique name for each pattern; (2) Intent describes the motiva-
tion or the known uses, (3) Operators represent the required changes to im-
plement the pattern, and finally (4) Pattern overview represents the precondi-
tions and post-conditions of evolution as a reference diagram called pattern
overview or pattern thumbnail.

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

42

Table 1 A Catalogue of Change Patterns for Architecture Evolution Aadopted from
[25].

Pattern
Name

Intent Operators Pattern
Overview

Component = CMP, Connector = CON, Add() = Addition Operation, Rem() = Removal Operation, C = Component Instance, X = Connector

Instance

Component
Mediation

Component Mediation integrates a medi-
ator component (CM) among two or
more directly connected components
(C1, C2).

‐ Add(CM:CMP)
- Add(X2 (CM, C1): CON)
- Add(X3 (CM, X3): CON)
- Rem(X1 (C1, C2):CON)

Functional
Slicing

Functional Slicing split a component (C)
into two or more components (C1, C2)
for a functional decomposition of C.

‐ Add(C1: CMP)
- Add(C2:CMP)
- Rem(C:CMP)

Functional
Unification

Functional Unification merges two or
more components (C1, C2) into a single
component (C) for a functional unification
of (C1, C2).

- Rem(C1: CMP)
- Rem(C2: CMP)
- Add(C: CMP)

Active
Displace-

ment

Active Displacement replaces an existing
component (C2) with a new component
(C3) while maintaining the interconnec-
tion with existing components (C1, C2).

- Add(C3:CMP)
- Rem(C2:CMP)
- Add(X2 (C2, C3): CON)
- Rem(X1 (C2, C1):CON)

Child
Creation

Child Creation creates a child component
(X1) inside an atomic component (C1),
such that C1 is a composite component
now.

- Add(X1: CMP)
- Mov(C (X1): CMP)

Child
Adoption

Child Adoption adopts a child component
(X1) from a composite component (C1)
to an atomic component (C2).

- Rem(C1 (X1): CMP)
- Add(C2 (X1): CMP)

Child
Swapping

Child Swap enables the swapping of the
child components (X1, X2) between
composite components (X1, X2).

- Rem(C1 (X1): CMP)
- Add(C2 (X1): CMP)
- Rem(C2 (X2): CMP)
- Add(C1 (X2): CMP)

B) Change Primitive vs Change Pattern
After presenting the pattern model (cf. Figure 2) and examples of change pat-
terns (cf. Table 1), we now distinguish between change primitives and change
patterns. A primitive change (primitive) is the most fundamental unit of architec-

Exploiting Patterns and Tool Support Khaliq, Ahmad, and Maqbool

43

ture evolution that supports the addition, removal and modification of individu-
al components and their ports and connectors with their endpoints [5]. Change
primitive are expressed as below:

For example, in Table 1 (cf. ComponentMediation - pattern 1), the addition
(Addcomponent) of an individual component, as CM that is of type CMP is ex-
pressed as change primitive: Add(CM : CMP). However, change primitives
have following limitations:

- Explicit Enforcement of Individual Constraints: unlike pattern-based
change representation in Figure 2, a primitive change is directly applied
to the architecture elements and it does not enforce any constraints such
as component must contain a port. The architects/designers must rely on
their knowledge about hierarchy of elements to manually add a port after
component addition to maintain architectural composition.

- Limited Reuse of Change: a primitive change offers a limited reuse with
addition or removal of individual components and connectors. For exam-
ple, considering ComponentMediation pattern above; when there is a
change affecting multiple components and connectors such as compo-
nent integration each of the individual changes must be explicitly speci-
fied. This can prove labourious and error-prone when the total number of
changes to be implemented are large and complex.

In contrast to change primitives, as modeled in Figure 2 and illustrated in Ta-
ble 1 a change pattern abstracts change primitives and constraints to enable
composite changes such as integration, composition, replacement of a collec-
tion of components and connectors. We further discuss the benefits of a pat-
tern-based change in the context of a scenario in Table 2. In Table 2, the in-
stance of Active Displacement pattern (cf. Table 1) is provided with details of
pattern application on P2P-AS architecture (cf. Figure 3). For pattern exam-
ples in Table 2, we use the terminologies atomic component that is a compo-
nent with no internal sub/child components. A composite component is a
component composed of one or more sub/atomic/child components by exploit-
ing the component composition concepts of software architectures [6, 18].

primitive := {
 (Addcomponent, Addconnector, Addport, Addendpoint),
 (Removecomponent, Removeconnector, Removeport, Removeendpoint),
 (Modifycomponent, Modifyconnector, Modifyport, Modifyendpoint),
}

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

44

3-3 EVOLUTION TOOL3

The tool supports pattern-based and automated evolution of the architecture
model. It is composed of an Interface and a Core. The Interface allows the
designer/architect to import the architecture model and select the change pat-
terns from the catalogue, as well as export the evolved model. The core pro-
vides the necessary functionality by applying constraints and operators and
using a pattern to evolve the architecture model. The tool first interprets archi-
tecture model (Figure 4 A)) through its architectural descriptions (Figure 4 B)),
then applies changes to descriptions and finally presents the evolved model to
the architect. The tool is developed as a plugin for possible future extensions
and utilising the resources of an integrated development environment (IDE). In
contrast to a standalone system, the plugin can exploit the features and other
plugins from IDE for stability, reusability of IDE resources, public availability
and possible future extensions [8].

The relationships of elements of Evolution Tool with Architecture Model and
Change Pattern are specified as: Evolution Tool Import Architecture Model,
Change Pattern, as importing the necessary elements before evolution as well
as Evolution Tool Export Architecture Model, exporting the new architecture
model after evolution. We provide details of tool-support for pattern-driven and
automated evolution in Section 4.

Table 2 Application of Child Creation Pattern

Child Creation Pattern

Pattern Intent: create a child component (X1) inside an atomic component (C1), such that C1

X1 as C1 contains () X1 and C1 is a composite component now.
Evolution Scenario: In Figure 3 P2P-AS architecture, client has to first Authenticate itself in
order to request the Appointment. Moreover, the Appointment components must maintain a list of
authenticated clients from Authenticate component. As the number of requesting client grows
system performance decreases. The problem reflects: how to evolve the architecture of the
appointment system to maintain its performance under increasing client requests?

Solution: A possible solution to minimize excessive component interaction is with unification of
the authentication and appointment functionalities (eliminating an explicit authentication and re-
questing for authenticated client’s messages). The Child Creation pattern from the catalogue (cf.
Table 1) can provide a solution (abstracting changes and constraints) with a high-level overview.
The pattern creates the Authenticate_Request component as a child of Appointment_Schedule
component. Such a change minimizes redundant interactions and also facilitates future modifica-
tion easily.

Pattern Overview:
The example scenario is provided in Figure 4 as an instance of the ChildCreation pattern from
Table 1.

 - Figure 4 A) represents the source architecture model of P2P-AS (on left – preconditions) and
its evolution (arrow representation) as a consequence of ChildCreation Pattern (on right – post-

3 Please note the term Tool in this paper refers to a prototype as a preliminary/proof-
of-concept version for our ongoing work on automated evolution of software architec-
tures.

Exploiting Patterns and Tool Support Khaliq, Ahmad, and Maqbool

45

condition). The pattern in Figure 4 A) represents an abstraction with a generic overview of the
architecture model before and after evolution.

 - The refinement of the changes with addition or removal of individual component and ports in
Figure 4 B) are reflected as changes in architecture description. In Figure 4 B) the Appoint-
ment_Schedule component is modified from an atomic to a composite component with fine-
grained representation of change at the component, port, connector and endpoint level to ensure
architectural composition is preserved.

Figure 4 Evolution Scenario – Evolution of Child Creation Pattern To Evolve P2P-AS.

4- PATTERN DRIVEN AND TOOL SUPPORTED EVOLUTION OF
SOFTWARE ARCHITECTURES

In this research we hypothesised that by unifying change patterns and tool
support, architectural changes can be (i) reused and (ii) automated for evolu-
tion of software architectures. In this section we aim to evaluate the hypothe-
sis and demonstrate pattern-based and tool supported change management
to evolve P2P-AS architecture. The evolution of the P2P-AS architecture from

A. Evolution of Architecture Model (abstract view)

B. Changes in Architecture Description (refinement)

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

46

Figure 4 to a client server model in Figure 5 enables multiple clients, simulta-
neously requesting appointment schedules from server. We demonstrate the
usability of the tool to automate pattern-based changes and enabling the de-
signer/architect to intervene, if and when required. We further evaluate the
relative measure of reusability for change primitive vs changes pattern in Sec-
tion 5. An overview of the pattern-based and tool-supported evolution process
is presented in Figure 5 that comprises of three primary activities including (i)
importing and exporting architecture descriptions, (ii) specification of architec-
ture changes, and (iii) application of change pattern. In developing a software-
intensive system (i) process illustrates what needs to be done, and (ii) activi-
ties in the process demonstrate how it is done [23]. All activities of the evolu-
tion process are detailed in Figure 5.

4-1 ACTIVITY I – IMPORTING/EXPORTING ARCHITECTURE
DESCRIPTIONS

It allows us to import the architectural descriptions, known as source architec-
ture model that can be evolved. Once the changes are applied, the evolved
architecture model known as the target architecture can be exported from the
tool to share its descriptions. For example, in Figure 5 A) the descriptions for
source architecture model (from Figure 4) are imported that consist of two
atomic components Appointment_Request and Authenticate_Request, whereas the
Appointment_Schedule is a composite component composed of Authenti-
cate_Request. The Appointment_Request and Appointment_Schedule are intercon-
nected using requestAppointment connector. In Figure 5 A), the architect views
source architecture model as the graphical representation on right with com-
ponents and connectors view on the interface of tool, while source architec-
ture description as xml representation on left are manipulated in the core of
the tool. The architecture model view also allows the architect to add or re-
move any architectural components and connectors by using the Edit Archi-
tecture Model option.

4-2 ACTIVITY II – SPECIFYING ARCHITECTURAL CHANGES

It allows the architect to specify the (i) intended change(s) and (ii) any con-
straints on the source model – also referred to as user intervention in the evo-
lution process.

- Specifying Change Intent: currently, the intent of change is specified by
means of some predefined change rules (e.g. integration, composition, de-
composition) of architectural components. For example, in Figure 5 B) the
architect is provided with a user interface to specify the ‘integration of a medi-
ator component between the Appointment_Request and Appointment_Schedule’.
After selecting the intent of change, the architect specifies the impact of
changes in terms of selecting the components to be evolved as the addition of
an atomic component Appointment_Server. They can specify if they want to add
an atomic or composite component by checking/unchecking the Composite
option.

Exploiting Patterns and Tool Support Khaliq, Ahmad, and Maqbool

47

In the architecture model, the sub-architecture that is candidate for change is
selected by the designer/architect. The sub-architecture is selected based on
a declarative specification of the architectural changes by means of prede-
fined change discussed above. For example, the integration of new architec-
tural component named Appointment_Server between two existing components
Appointment_Request and Appointment_Schedule is specified by the user as:

Integrate(Appointment_Server, (Appointment_Request, Appointment_Schedule) CMP).

The rule specifies that existing sub-architecture in terms of two architectural
elements as components Appointment_Request, Appointment_Schedule, whereas
Appointment_Server is a new component to be integrated in the sub-architecture.

- Specifying Change Constraints: after specifying the changes on architecture
model, the architect can also specify the constraints as the post-conditions of
the evolution, while the preconditions are automatically computed based on
the source architecture descriptions. For example, the architect specifies post-
condition as the integration of a new component Appointment_Server along with
two connectors requstAppointment interconnecting Appointment_Server and Ap-
pointment_Request where requestSchedule binds Appointment_Server and Appoint-
ment_Schedule components. Once the changes are specified the architect can

choose to Select Patterns to retrieve the most appropriate patterns from the
catalogue (cf. Table 1). The patterns are selected automatically based on the
preconditions and post-conditions. These pre/post-conditions specified by the
architect are expressed as XML constraints and are matched with the
pre/post-conditions of a pattern (cf. Figure 4).

It is vital to mention if a pattern is not found such as pre/post-conditions speci-
fied by the architect do not match to those of pattern, the tool allows the archi-
tect to manually specify the changes (Edit Architecture Model option as a
case of change primitives [5]). Matching of the preconditions is a mandatory
condition for the selection of the sub-architecture for change implementation.

4-3 ACTIVITY III – APPLYING CHANGE PATTERNS

Once changes are specified (Activity II) on architecture model (Activity I);
based on change specification and constraints, the appropriate pattern is dis-
played with its impact on the architecture. For example, in Figure 5 C) the
Component Mediation is selected that enables the integration of Appointmrnt_Server
to mediate between Appointment_Request and Appointment_Schedule components.
The view in Figure 5 C) helps an architect to visualise the impact of a pattern
on the architecture to decide if it results in desired impact of change on the
model or not. The user can enable pattern refinements by adding the compo-
nent ports and refinement can be seen as an auxiliary step to pattern applica-
tion - adding port level details to architectural components (cf. Figure 4). Fi-
nally, when the architect aims to apply pattern he/she can click on Apply Pat-
tern to execute changes, otherwise pattern application can be cancelled and
no change will be applied to the source architecture model.

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

48

 Figure 5. Overview of the Pattern-based and Tool Supported Evolution.

5- EVALUATIONS, LESSONS LEARNT AND VALIDITY THREATS

Based on the details in Section 4 that focused on demonstrating tool support,
we now report results of evaluation for pattern-based reuse of the architectural
changes.

5-1 EVALUATING PATTERN-BASED CHANGE REUSE

We utilise the ISO/IEC 25010:2011 quality model to evaluate the reusability of
architectural changes [3]. The work on pattern-based evolution is a continuous
effort, therefore; results presented here and elsewhere [11, 25] represent an
incremental effort for a step-wise evaluation of the overall solution – i.e; pat-
tern discovery to complement pattern application [7]. Reusability as a sub-
characteristic of maintainability represents the quality of solution to enable the
reuse of existing resources in terms of knowledge/expertise to address the
recurring evolution tasks [3]. To evaluate reusability of architectural evolution,
we use comparison of primitive vs proposed pattern-based changes with the
following metric adopted from [24] and extended for our needs:

Exploiting Patterns and Tool Support Khaliq, Ahmad, and Maqbool

49

Total Change Operations (TCO) - to quantify the required efforts for archi-
tectural change implementation, we derived and used the TCO metric as “the
total number of architecture change operations required to resolve an archi-
tecture evolution scenario. TCO can be viewed as an inspiration from the Line
of Codes (LOC) metric that estimates the total lines of code required to
achieve the desired functionality or represent the size or magnitude of source
code. In contrast, the TCO measures the total number of change operations
(i.e; operational size of evolution). To measure a relative reusability (Primitive:
PrimitiveTCO vs Pattern: PatternTCO), we formulate the ratio as follows:

(1 - PatternTCO / PrimitiveTCO) X 100

Figure 6 provides a comparison overview of the relative number of change
operations for implementing a specific change as resolving an evolution sce-
nario. For example, to support the change intent that supports integration of
components the Component Mediation pattern (cf. Figure 5) requires three
operators in terms of the preconditions, pattern application and the post-
conditions also reducing the effort of pattern selection performed by the tool.
In contrast, to implement similar change the change primitives require at-least
a total of five operations to add the required component, their interfaces and
connectors. In addition, with change primitives the designer/architect must be
well aware of available patterns to rely on his knowledge for the selection of
the most appropriate patterns that is a significant challenge for novice archi-
tects [15]. In this scenario, the ratio of reuse is given as R = 1 – (3/5) x 100
calculated as 40%. To generalise the findings, a summary of the comparison
for patterns vs primitives (using TCO) is provided in Figure 6, we measure a
total of 34% approx. reuse by applying patterns on the P2P-AS evolution case
study. Based on the summary of results in Figure 6, we provide an overview
of the comparative analysis for TCO for primitive and pattern-based changes.

Pattern-based changes take approximately 30% – 35% of change operations
compared to primitive changes. However, pattern-based change does not
support a fine granular change representation. An increase in the percentage
reuse is (i) directly proportional to an increase in the total number of changes,
and (ii) inversely proportional to change implementation efforts as primitive vs
pattern based change.

Consideration for Total Time Taken: Another evaluation is based on the
time efficiency as the time taken for change implementation that is considered
as part of future evaluations. We have primarily focused on exploiting patterns
as reusable solutions to support design-time evolution; however, to support
runtime evolution patterns must be validated to support cost/time-efficient im-
plementation of changes as part of our on-going and future research.

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

50

5-2 LESSONS LEARNT

We discuss a few lessons learnt based on architectural evolution and the les-
sons can also indicate future refinements of the solution. We generalise the
presentation such that any architecture models with component-connector
view that needs to be evolved can also benefit from our observations and les-
sons.

Lesson I - Granularity Conflicts Reusability: In primitive vs pattern-based mod-
ifications, there is a trade-off between the granularity and reusability. Granu-
larity of architectural modification refers to the completeness of modifications
such as adding configurations with components that contain ports, etc. Reus-
ability of architectural changes refers to reuse of generic modification opera-
tions. In contrast to primitive architectural changes, pattern-based changes
support reuse with enhanced efficiency of modification process resulting in an
average 33% reuse. However, pattern-based changes do not support a fine-
granular change implementation. A possible solution is to introduce the pat-
tern refinements that extend the higher-level architectural components and
connectors as composite elements with interfaces and endpoints respectively
as atomic elements [17].

Lesson II – Consistency vs Reusability of Changes: The role of pattern cata-

logue is central in promoting patterns for reuse and consistency of architec-
tural modification.

Figure 6. A comparison of Total Change Operations - Primitives vs Patterns.

Exploiting Patterns and Tool Support Khaliq, Ahmad, and Maqbool

51

During architectural modifications, the structural consistency of architecture
model must be maintained by preserving the architectural hierarchy (part-
whole relation) as modeled Figure 2. For example, a component that is not
connected to another due to a missing port, endpoint or connector is called an
orphaned component that violates architectural quality and structure. Or-
phaned component results in counter-productive and negative impacts of pat-
terns that may result in violating architectural composition. The model in Fig-
ure 2 is the basic mechanism to confirm a valid pattern and architecture mod-
el. In addition, the invariants help in preserving the required architectural
structure and properties in an attempt to minimise the violation of architectural
composition.

Lesson III – The Needs for Usability Evaluations from Practitioners: Usability

as a system quality must support the attributes like learnability, operability,
etc. by its users [3]. In Section 4, we only manage to demonstrate the tool’s
usability, while evaluating usability requires an empirical evaluation by engag-
ing multiple designers/architects to utilise the tool and report their experiences
about its usefulness. Given the scope of research we envision usability evalu-
ation based on experts’ feedback as essential criteria to further strengthen the
solution and also as one of the dimensions of future research.

5-3 VALIDITY THREATS

In this section we discuss the threats to the validity of this research that can
become possible limitations and provide an indication of future work that can
possibly minimise these threats.

Threat I – Limited Data for Architecture Evolution: A limited number of existing
change patterns and a small case study to evaluate pattern applicability rep-
resents a validity threat. The prospects of evaluating the effectiveness of our
solution for industrial case studies requires more data and validation to com-
ment on the benefits of solution in the context of evolution for industrial soft-
ware. Specifically, in an industrial scale software architecture, the evolution
usually takes place over long periods that span months, years and often dec-
ades [1, 13]. In the general context, the research aims to provide a foundation
with a framework that integrates architecture change mining for a continuous
acquisition of knowledge as patterns that support reusability and efficiency of
the change execution process.

Threat II – Accuracy of Pattern Selection: During pattern-based architecture
evolution, accuracy of the pattern selection refers to solution’s ability to select
the most appropriate change patterns from a pattern collection. The possible
threat to a more rigorous validity of pattern selection is the limited number of
patterns in the pattern collection (cf. Table 1). This threat has a direct impact
on selecting the most appropriate patterns from pattern collection. Currently,
we have a total of 7 change patterns that represent a relatively limited number

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

52

of patterns. As the number of change patterns in the pattern catalogue grows
it may have an impact on the precision of pattern selection.

6- RELATED RESEARCH

A recent study on classification of architectural evolution research in [12] has
highlighted [18] as one of the earliest studies, published in 1995 to support
software evolution and refinement through its architecture. Since then, archi-
tectural evolution research has progressed and matured over two decades
with a collective impact of research highlighted in recent studies [4, 12]. We
specifically position our contributions in the context of reusable (Section 6.1)
and automated (Section 6-2) evolution that represent two of the vital challeng-
es both from academic and from industrial perspective [12, 14]. There is no
existing solution on unifying patterns and tool support for architectural evolu-
tion.

6-1 REUSABLE CHANGE MANAGEMENT FOR SOFTWARE
ARCHITECTURES

A) ACADEMIC RESEARCH
Recently, the concepts of change patterns [19, 20, 26] and evolution styles [6]
have emerged as solutions - focused on applying reusable knowledge and
expertise - to address the recurring problems of architectural evolution.
Change patterns are further classified as patterns that support the (i) design-
time evolution of requirements and corresponding architecture model and (ii)
adaptation patterns that support runtime evolution of architectures [19, 20].
The notion of change patterns is inspired by design patterns, however; instead
of design concerns, change patterns specifically address architectural mainte-
nance and evolution as corrective, adaptive and perfective changes as per
ISO/IEC change taxonomy [20]. In contrast, evolution styles propose evolution
planning to derive reusable evolution paths [6]. An evolution path represents a
reusable strategy to plan architectural evolution based on the cost, time, and
efforts of evolution. Evolution styles are based on the classical concept of ar-
chitecture styles.

B) INDUSTRIAL STUDIES AND SOLUTIONS

In an industrial scale evolution, that is driven-by various types of constraints
including time and economic aspects; there is a growing interest on exploiting
potentially reusable changes that replace ad-hoc and once-off changes. One
of the recent examples is [14] that support the reuse of adaptation policies to
support run-time evolution of an industrial system called Data Acquisition and
Control Service (DCAS). DCAS system monitors and manages highly popu-
lated networks of devices in renewable energy production plants. The re-
search has demonstrated the reuse of recurring adaptation strategies that
minimised about 40% of the efforts for architecture evolution compared to an
ad hoc and once-off change implementation. In [13] an empirical study of
change requests has been conducted based on four different releases of a
large telecom system. The findings of the study highlights that change reuse

Exploiting Patterns and Tool Support Khaliq, Ahmad, and Maqbool

53

have resulted in an (i) increased maintainability, testability and overall quality
with (ii) decreased efforts and time for future implementation of changes.

6-2 AUTOMATED EVOLUTION OF SOFTWARE ARCHITECTURE

In comparison to reuse, the automation of architecture change management
has achieved much less attention with only notable studies [21, 22]. Patterns
facilitate reuse, however; a lack of automation burdens an architect with man-
ual – exhaustive, error-prone and time-consuming – efforts to plan and exe-
cute evolution [19]. Automation of such tasks seems ideal, however; it entails
certain challenges like complexity, type of architecture and evolution that must
be supported by a tool [8]. Moreover, as identified in [21] architecting and evo-
lution are more than just enabling the automation; instead an appropriate tool
support must complement the user/architect’s intervention to guide the
change management process.

Enabling evolution and its automation require iterative development of solu-
tion. Specifically, evolution reuse relies on strong theoretical foundations of its
usefulness before developing any tools to support automation. A recent study
is considered as the first attempt to establish evolution styles as artifacts of
reuse [6]. Once the foundation and usefulness have been identified that pro-
vides the requirements and needs to develop a tool for an automated specifi-
cation of styles [22]. The research on evolution of automated production sys-
tems highlights the challenges and futuristic research dimensions of continu-
ous change management of industrial scale software systems [27]. The study
identifies that, in order to support a continuous maintenance and evolution of
complex and real world software, automation can be influential for time and
cost-effective change management.

Comparison Summary: Existing vs Proposed Solution - In conclusion, the
proposed solution generally lies at the intersection of software reuse and au-
tomated software engineering. First, the proposed solution is relevant to re-
search that focus on avoiding ad-hoc changes with reusable and best practic-
es for software evolution [6, 14]. In contrast to these studies, the proposed
solution promotes a two-step process for reusable evolution with (i) change
pattern discovery, (ii) exploiting discovered patterns from [15, 25] to enable
reuse of architectural changes. However, in contrast to [14]; our solution is
focused on design-time rather than runtime evolution that can be considered
as a concern for future research. Moreover, we aim to complement the exist-
ing research with reuse and automation of architecture evolution [21, 22]. Pat-
tern languages and pattern catalogues for architecture evolution can benefit
from tool support [15]. We demonstrated that patterns alongside tool support
provide an effective mechanism for reusable and automated change support,
while incorporating the architect’s intervention and feedback is vital to guide
the evolution process. We have also followed the same two step approach as

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

54

(i) establishing and discovering architecture change patterns (previous work
[11, 25], cf. Section 3), followed by (ii) work in this paper that supports applica-
tion of discovered patterns to automate evolution (cf. Section 4).

7- CONCLUSIONS

In this paper, we propose to support changes in software architecture by
means of change patterns exploited with an appropriate tool support. The ex-
isting research have exploited patterns as artifacts of reuse or tool support to
enable automation, however; there is no research to unify pattern-driven and
tool-supported architectural evolution. We have focused on the unification of
the empirically discovered change patterns and systematically developed tool
support to enable reusable and automated evolution of software architectures.

The preliminary results of evaluation suggest that pattern-based changes en-
able reuse but lack a fine-granular change execution. The granularity of
change representation refers to completeness of change execution on archi-
tectural elements. Specifically, architecture change patterns abstract the primi-
tive changes that add/remove/modify components and connectors into reusa-
ble pattern-based changes to compose/merge/replace components and con-
nectors. Tool-support facilitates automation of architecture change implemen-
tation, however; user intervention is critical to guide architectural evolution.
We have also identified some validity threats like availability of data and accu-
racy of pattern selection. Our future work primarily focuses on acquisition of
data and involvement of practitioners for further validations and more objec-
tive interpretation of the results.

REFERENCES

[1] T. Mens and S. Demeyer, Software Evolution, 1st ed. Springer, 2008.

[2] M. M. Lehman and J. F. Ramil, “Software Evolution: Background, Theory,
Practice,” Information Processing Letters, vol. 88, no. 1, pp. 33–44, 2003.

[3] ISO, “ISO/IEC 25010:2011 Systems and Software Engineering – Systems
and Software Quality Requirements and Evaluation (SQuaRE) – System
and Software Quality Models,” 2011. [Online:]
http://webstore.iec.ch/preview/info_isoiec25010%7Bed1.0%7Den.pdf

[4] H. P. Breivold, I. Crnkovic, and M. Larsson, “A Systematic Review of Soft-
ware Architecture Evolution Research,” Information and Software Tech-
nology, vol. 54, no. 1, pp. 16–40, 2012.

[5] B. J. Williams and J. C. Carver, “Characterizing Software Architecture
Changes: A Systematic Review,” Information and Software Technology,
vol. 52, no. 1, pp. 31–51, 2010.

Exploiting Patterns and Tool Support Khaliq, Ahmad, and Maqbool

55

[6] D. Garlan, J. M. Barnes, B. Schmerl, and O. Celiku, “Evolution Styles:
Foundations and Tool Support for Software Architecture Evolution,” in
Joint Working IEEE/IFIP Conference on Software Architecture, 2009 &
European Conference on Software Architecture. WICSA/ ECSA. IEEE,
2009, pp. 131–140.

[7] A. Ahmad, P. Jamshidi, and C. Pahl, “Classification and Comparison of
Architecture Evolution-Reuse Knowledge - A Systematic Review,” in Jour-
nal of Software: Evolution and Process. DOI: 10.1002/smr.1643. Wiley,
2014.

[8] J. M. Barnes and D. Garlan, “Challenges in Developing a Software Archi-
tecture Evolution Tool as a Plug-Ins,” in Proceedings of the 3rd Workshop
on Developing Tools as Plugin-Ins (TOPI13), 2013, pp. 13–18

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Ab-
straction and Reuse of Object-oriented Design. Springer-Verlag LNCS,
1993.

[10] O. Zimmerman, J. Koehler, F. Leymann, R. Polley, and N. Schuster, N.
2009. Managing Architectural Decision Models with Dependency
Relations, Integrity Constraints, and Production Rules. In Journal of
Systems and Software. Vol 82, pp: 1249 – 1267, 2009.

[11] A. Ahmad, P. Jamshidi, and C. Pahl, “Graph-based Pattern Identification
from Architecture Change Logs,” in In Tenth International Workshop on
System/Software Architecture. Springer, 2012, pp. 200–213.

[12] P. Jamshidi, M. Ghafari, A. Aakash, and C. Pahl, “A Framework for Classi-
fying and Comparing Architecture-centric Software Evolution Research,”
in 17th European Conference on Software Maintenance and Reengineer-
ing (CSMR’13). IEEE, 2013, pp. 305–314.

[13] P. Mohagheghi and R. Conradi, “An Empirical Study of Software Change:
Origin, Acceptance rate, and Functionality vs. Quality Attributes,” in nter-
national Symposium on Empirical Software Engineering, ISESE’04. IEEE,
2004, pp. 7–16.

[14] J. C´amara, P. Correia, R. De Lemos, D. Garlan, P. Gomes, B. Schmerl,
and R. Ventura, “Evolving an Adaptive Industrial Software System to Use
Architecture-based Self-adaptation,” in 8th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. IEEE,
2013, pp. 13–22

[15] A. Ahmad, P. Jamshidi, C. Pahl, F. Khaliq. A Pattern Language for Evolu-
tion Reuse in Component-based Software Architectures. ECASST Special
Issue on Patterns Promotion and Anti-patterns Preventions, vol 59, pp: 1

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

56

– 32, 2013.

[16] N. Medvidovic, and R. N. Taylor. A Classification and Comparison Frame-
work for Software Architecture Description Languages. In IEEE Transac-
tions on Software Engineering, vol 26, issue 1, pp: 70-93, 2000.

[17] Harrison, N. B., Avgeriou, P., Zdun, U.: Using Patterns to Capture Archi-
tectural Decisions. In IEEE Software 24(4): 38-45, 2007.

[18] M. Moriconi, X. Qian, and R.A. Riemenschneider. Correct Architecture
Refinement. In IEEE Transactions on Software Engineering, vol. 21, no. 4,
pp. 356 - 372, 1995.

[19] K. Yskout, R. Scandariato, and W. Joosen, “Change patterns: Co-evolving
Requirements and Architecture. In Journal of Software and Systems Mod-
eling, vol 13, no 2, pp: 625-648, 2014.

[20] H. Gomaa, K. Hashimoto, M. Kim, M, S. Malek, D. A. Menascé, Software
Adaptation Patterns for Service-oriented Architectures. In 2010 ACM
Symposium on Applied Computing, ACM, 2010.

[21] L. Grunske. Automated Software Architecture Evolution with Hypergraph
Transformation. In Proceedings of the 7th International IASTED on Con-
ference Software Engineering and Application, 2003.

[22] J.M. Barnes, A. Pandey, and D. Garlan. Automated Planning for Software
Architecture Evolution. In 28th IEEE/ACM International Conference on Au-
tomated Software Engineering, 2013.

[23] M. E Fayad. Software Development Process: A Necessary Evil. In Com-
munications of the ACM, vol. 40, no. 9, pages 101–103, 1997.

[24] S. Tragatschnig, H. Tran, and U. Zdun. Change patterns for supporting the
evolution of event-based systems. In 21st International Conference on
COOPERATIVE INFORMATION SYSTEMS (CoopIS 2013), Springer,
2013

[25] A. Ahmad, P. Jamshidi, C. Pahl. Graph-based Discovery of Architecture
Change Patterns from Logs. Technical Report, School of Computing, Dub-
lin City University, 2012.
[Online:]
http://media.wix.com/ugd/396772_b1edc14eec2a4567b0f4e38a4e364653
.pdf

[26] I. Côté, M. Heisel, and I. Wentzlaff. 2007. Pattern-based Evolution of
Software Architectures. Lecture Notes on Computer Science, vol. 4758,
pp.29-43, 2007.

Exploiting Patterns and Tool Support Khaliq, Ahmad, and Maqbool

57

[27] B. Vogel-Heuser, A. Fay, I. Schäfer and M. Tichy. Evolution of Software in
Automated Production Systems — Challenges and Research Directions.
In Journal of Systems and Software , vol 110, pp: 54 - 84, 2015.

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

58

