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ABSTRACT 

Lehman’s law of continuing change implies that software must continually 
evolve to accommodate frequently changing requirements in existing systems.  
Also, maintainability as an attribute of system quality requires that changes 
are to be systematically implemented in existing software throughout its 
lifecycle. To support a continuous software evolution, the primary challenges 
include (i) enhancing reuse of recurring changes; and (ii) decreasing the 
efforts for change implementation. We propose change patterns and 
demonstrate their applicability as reusable solutions to recurring problems of 
architectural change implementation. Tool support can empower the role of a 
designer/architect by facilitating them to avoid labourious tasks and executing 
complex and large number of changes in an automated way. Recently, change 
patterns as well as tool support have been exploited for architecture evolution, 
however; there is no research to unify pattern-driven (reusable) and tool-
supported (automated) evolution that is the contribution of this paper. By 
exploiting patterns with tool support we demonstrate the evolution of a peer-
to-peer system towards client-server architecture. Evaluation results suggest 
that: (i) patterns promote reuse but lack fine-granular change implementation, 
and (ii) tool supports automation but user intervention is required to customise 
architecture change management. 

Keywords: Automated Evolution, Change Patterns, Software Architecture, Soft-
ware Evolution.  
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1- INTRODUCTION  

Evolution of software systems is a continuous phenomenon as a 
consequence of changes in system requirements and operational 
environments [1]. Lehman’s law of continuing change states that an E-type 
system that is any real-world software must be continually adapted or it 
becomes progressively less satisfactory [2]. In addition, maintainability; i.e., 
the effectiveness with which changes can be implemented to support 
evolution represents an attribute of software quality as per the ISO/IEC 
25010:2011 quality model [3]. Therefore, to accommodate frequently changing 
requirements; continuous evolution is required to ensure quality and 
evolvability of existing software [4]. However, to support continuous evolution; 
an important decision lies in selection of an appropriate software 
representation such as code vs design vs configurations for change 
implementation.  

Architecture1 represents the blueprint of a software system by abstracting low-
level and implementation specific details. For example, the source-code mod-
ules and their interactions can be abstracted with higher-level representations 
such as architectural components and their connectors [5, 6]. Source code 
changes in general proved effective for software refactoring as corrective type 
changes, while architectural evolution primarily aims at perfective and adap-
tive changes2 [5]. Moreover, the component-connector architectural represen-
tations provide the stakeholders, designers, and developers with a system 
overview, known as global structure for systematic modelling, development, 
and evolution of software [6]. Once the decision is reached to exploit the ar-
chitecture as the driver for software evolution, we are faced with two distinct 
challenges on (i) how to capitalise existing knowledge and expertise that can 
be reused to tackle recurring evolution [7], and (ii) how to automate and cus-
tomise the application of such reuse knowledge [8] – both introduced below.  

The concept of applying reuse-knowledge or best practices to design and de-
velop software emerged from the Gang-Of-Four (GOF) design patterns [9]. 
After more than two decades of research and practice, design patterns have 
now matured to establish various catalogues and languages as an integral 
part of software development processes. In contrast, the recent concepts of 
evolution styles or change patterns as the artifacts of evolution-specific 
knowledge are innovative but relatively immature [6, 19, 11]. Some industrial 
[13, 14] as well as academic studies [4, 7, 12] on software evolution have 
highlighted the growing needs to develop processes, frameworks and patterns 
that exploit reuse-knowledge to support design and architectural evolution. 
Specifically, a change pattern packages together changes, constraints, and 
architectural descriptions as evolution-knowledge that can be reused during 
change implementation [11, 26].  
 

1 ISO/IEC/IEEE 42010 Systems and software engineering is a standard for Architec-
ture description of software systems.  

2 In literature [4, 5] the terms evolution and change are virtually synonymous and of-
ten used interchangeably. However, a distinction must be maintained – a collection of 
changes on architectural/software description cause their evolution  
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Automation of change implementation enables the execution of complex tasks 
such as frequent addition or removal of a significant number of component 
and connectors that may prove error-prone and time-consuming with manual 
efforts [8]. In addition, customisation allows designers/architects to incorpo-
rate their decisions such as specifying the evolvable and preservable struc-
tures or selecting/discarding specific changes on software architecture. Tool 
support with necessary intervention and customisation enables importing the 
source and exporting the evolved architecture models and support necessary 
steps that enable the evolution of source model [8]. 

In this paper, we aim to unify reusability and automation of changes in soft-
ware architecture evolution process. The existing research lacks any solutions 
that integrates change patterns with necessary tool support during architec-
tural evolution [6, 8]. The state of the art on architectural evolution research 
highlights the needs for solution(s) that supports an empirical discovery of 
change patterns, known as reuse knowledge acquisition and systematic ap-
plication of discovered patterns to evolve software architectures, known as 
reuse knowledge application [4, 7, 12]. Therefore, considering change pat-
terns as artifacts of evolution specific knowledge; our proposed contributions 
focuses on: 

- Exploiting change patterns as artifacts of evolution specific knowledge 
with tool support to facilitate reusable and automated change manage-
ment for software architectures.  

- Enabling user intervention in the evolution process to customise and 
guide architectural change management.   

The remainder of this paper is organised as follows. Section 2 provides re-
search challenges and overview of the solution. Section 3 presents a meta-
model of pattern-driven and tool-supported architectural change management 
and introduces the change pattern catalogue. Section 4 demonstrates pattern-
based reuse and prototype support for architecture evolution. Section 5 pre-
sents evaluations, lessons learnt and validity threats. Section 6 overviews 
related research. Section 7 concludes the paper.  

 

2- PRESEARCH CHALLENGES AND SOLUTION OVERVIEW  

In this section, first we discuss the primary research challenges (in Section   
2-1) that follows an overview of the proposed solution that address the chal-
lenges (in Section 2-2). 

2-1 CHALLENGES 

Based on the progress of research on software architectural evolution, we 
have identified two primary challenges as below. 
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Challenge I -  Integrating Reuse Knowledge and Tool Support in Architecture 
Evolution Process 

Reuse knowledge in terms of change patterns allows the designers and archi-
tects to leverage the existing expertise and strategies to tackle recurring prob-
lems during architectural evolution. Recently, patterns as artifacts of reuse 
[19] or tool support to enable automation [22] have been exploited for archi-
tecture evolution, however; there is no research to unify pattern-driven and 
tool-supported architectural evolution. The lack of tool integration in pattern-
based architectural evolution process is mainly due to economic and technical 
challenges [21, 22]. Specifically, the evolution of industrial scale software 
architecture is driven by timely and economically efficient change 
implementation that often results in automated but ad-hoc and once-off 
solutions [19]. Moreover, complexities like continuous pattern discovery, 
appropriate pattern selection, pattern evaluation and its application during 
architecture evolution process poses a variety of challanges for developing a 
comprehensive tool support for pattern-based architectural evolution [8]. 

Challenge II - Customisation and User Intervention during Architecture Evolu-
tion 

Another issue in architectural evolution is the customisation of the architectur-
al evolution process as per the requirements specification of architectural el-
ements and proposed changes on them. There is a need to facilitate the de-
signers/architects with incorporation of their decisions, preferences and exper-
tise to guide the architecture evolution process. In this context, a complete 
automation is desirable, however; both evolution and architecting are intellec-
tual processes that require human intervention and collective decision rather 
than pure automation of change execution [4, 8]. 

In addition to the challenges above, it is vital to mention another issue that lies 
with a continuous discovery of architecture evolution knowledge that must be 
frequently integrated in the architectural evolution process. The challenges 
and solution for a continuous discovery of architectural evolution knowledge 
have been discussed in our previous research [25]. In this paper, we outline 
the primary research problem as: 

How to unify patterns and tool support that incorporates user intervention in 
the evolution process to enable reusable and automated architectural change 

management. 

2-2 OVERVIEW OF PROPOSED SOLUTION 

In order to address the outlined challenges above, we provide an overview of 
the proposed solution as illustrated in Figure 1.  In contrast to the existing re-
search on evolution styles [6] and change patterns [19], in the proposed solu-
tion we exploit the existing change patterns from [11, 25] for reusable and au-
tomated evolution of software architectures. Considering the context of Figure 
1 as the proposed solution, the pattern collection (P1, P2, P3) supports multi-
ple changes (C1, C2) as addition or removal of architectural components and 
connectors causing an incremental evolution of architecture models (A1, A2, 
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A3). A collection of tool elements (T1, T2, T3) enable the necessary automa-
tion. The role of an architect or designer is empowered by selecting the        
patterns and applying the tool support to enable incremental changes to 
evolve architectures in a reusable and automated fashion.  

 
Assumptions and Contributions of Solution: This research provides a sig-
nificant extension to our previous work on automated empirical discovery of 
patterns by mining architecture change logs [11, 25]. In the present work, we 
assume the existence of change pattern collection such as pattern languages 
or pattern catalogues [15, 19]. The contribution of this research is to exploit 
existing change patterns [15, 25] to automate and customise change support 
for software architectures. We demonstrate pattern-based reuse and tool-
supported automation by evolving a peer-to-peer appointment system towards 
client-server architecture. In addition, by supporting different parameters such 
as specification of architectural constraints or change operations, the tool fa-
cilitates necessary user intervention to customise architectural changes. The 
lack of comprehensive case studies from industrial-scale systems for evalua-
tion represents a validity threat to the solution. As part of our ongoing re-
search, acquisition of industrial data for evaluation defines futuristic research. 

 

3- MODELING PATTERN BASED AND TOOL SUPPORTED 
EVOLUTION 

Modeling is the first step towards supporting evolution as it identifies and 
represents the necessary elements, their composition and interrelations. 

 

Figure 1 Overview of Pattern-Driven and Tool-Supported Architectural Changes. 
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Figure 2 provides a meta-model for pattern-based and tool-supported 
architectural evolution. Based on Figure 2, we discuss the architecture model 
in Section 3-1 with details of the pattern model in Section 3-2 and evolution 
tool in Section 3-3. Architecture model and change pattern as a concept as 
well as implementation remain independent of any specific tool or platform. In 
the context of Figure 2, any specific tool or technology could only use 
architecture and pattern model by importing/exporting them but could not 
change their representation. The elements and concepts presented in this 
section are utilised throughout the paper.  

 
 

Figure 2 Model Elements and their Interrelationships. 

3-1 ARCHITECTURE MODEL 

It provides architectural specification in terms of the individual elements that 
are composed and interconnected to represent the overall structure of soft-
ware. In Figure 2, the architectural model is specified with architectural ele-
ments named Components as computational elements of system along with 
their Connectors for component interconnections. This description is based on 
the well-known view of the model, the so called component and connector 
(C&C) architectural view [16]. Furthermore, components are composed of 
Ports that either provide (a.k.a. source port) or require (a.k.a. sink port) some 
functionality – a component’s point-of-interaction. In contrast, a connector is 
composed of Endpoint that provides the binding among the provider and re-
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quester ports. As modeled in Figure 2, by abstracting the individual changes 
in patterns, the operations on architectural model are constrained to preserve 
composition of elements. For example, constraints ensure that whenever a 
component is added, its corresponding port must also be added to ensure 
integrity of architectural composition. Based on the model from Figure 2, we 
discuss a concrete example of the architecture model in Figure 3 that is also 
used as a running example. 

 

Figure 3 Component and Connector Architectural View for P2P-AS System.  

 
Running Example - Architectural view of Peer-to-Peer Appointment System 
(P2P-AP) presents architectural description as a partial view in Figure 3 A) as 
well as architecture model in Figure 3 B).  Specifically, Figure 3 B) represents 
three distinct components (Appointment_Request, Appointment_Schedule, Authenti-
cate_Request) and three connectors (getAppointment, getAuthentication, getAuthenti-
cationList) with appropriate ports and endpoints respectively. For space rea-
sons, we abstract system-level details such as user interfacing and data re-
trieval. We primarily focus on the C&C architectural view as Figure 3 B). Ap-
pointments_Request gets appointments from Appointment_Schedule component. 
Both Appointment_Request and Appointment_Schedule components require Authenti-
cate_Request component for authenticating requests before issuing appoint-
ment schedules. We utilise the P2P-AP architectural representation from Fig-
ure 3 as a source model and demonstrate pattern and tool support for its evo-
lution in subsequent sections.  
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The representation in Figure 3 B) as architecture model presents a graphical 
view of the interconnected components, while an architectural description in 
Figure 3 A) also detailed later provides a suitable notation to formally specify 
the architecture. It is vital to distinguish between, (i) a model that is a graphical 
view for human comprehension such as designer/architect, while (ii) descrip-
tion represents a suitable/formalised format for machine representation or 
tool-based manipulation.  

3-2 CHANGE PATTERN 

It is composed of Operators that specify changes as addition, removal, and 
modification of architectural components and connectors. It is vital to mention 
that in the evolution model (cf. Figure 2) there is no direct relation between 
operators and architecture elements as operators cannot be directly applied to 
architecture. In traditional change implementation techniques, when individual 
operators are applied to an architecture model this is referred to as change 
primitives [5]. In contrast to primitives, change patterns abstract the lower-
level and ad-hoc changes into generic and reusable changes. Moreover, the 
constraints specify a set of conditions as precondition, invariant, post-
conditions that must be enforced through a pattern before, during and after 
change implementation. Constraints are vital to preserve certain conditions or 
architectural structure during and after change execution such as a compo-
nent must contain one or more port. Based on the elements in Figure 2, a 
change pattern is modeled as: a constrained composition of change opera-
tionalisation on the architecture model. A change pattern is a generic and re-
peatable solution to frequently occurring architecture evolution problems. Ex-
amples of change patterns are provided in Table 1. The relation between ar-
chitecture model and change pattern is expressed as: Change Pattern is Ap-
pliedTo Architecture Model, so that pattern-based architecture evolution can be 
supported. 

A) A Catalogue of Architecture Change Patterns 
The catalogue represents a collection of patterns ready for selection and re-
use. We followed the guidelines in [17] to develop a pattern template present-
ed in Table 1. The seven patterns presented have been discovered by inves-
tigating architecture change logs as histories of architecture evolution [11, 25]. 
By investigating logs, we discovered recurring changes with specific proper-
ties as potentially reusable patterns with additional details in [25]. In Table 1, 
we only provide the necessary elements of the template with extended details 
of an individual pattern in Table 2. Pattern elements include: (1) Pattern Name 
that provides unique name for each pattern; (2) Intent describes the motiva-
tion or the known uses, (3) Operators represent the required changes to im-
plement the pattern, and finally (4) Pattern overview represents the precondi-
tions and post-conditions of evolution as a reference diagram called pattern 
overview or pattern thumbnail.  
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Table 1 A Catalogue of Change Patterns for Architecture Evolution Aadopted from 
[25]. 

Pattern 
Name 

Intent Operators Pattern  
Overview 

Component = CMP, Connector = CON, Add() = Addition Operation, Rem() = Removal Operation, C = Component Instance, X = Connector 

Instance 

 
 

Component  
Mediation 

 
Component Mediation integrates a medi-
ator component (CM) among two or 
more directly connected components 
(C1, C2). 
 

‐ Add(CM:CMP) 
- Add(X2 (CM, C1): CON) 
- Add(X3 (CM, X3): CON) 
- Rem(X1 (C1, C2):CON) 

 
 

 
 

 
 

Functional  
Slicing 

 
Functional Slicing split a component (C) 
into two or more components (C1, C2) 
for a functional decomposition of C. 
 

 
‐ Add(C1: CMP) 
- Add(C2:CMP) 
- Rem(C:CMP) 

 
 

 
 

 
 
 

Functional  
Unification 

 
Functional Unification merges two or 
more components (C1, C2) into a single 
component (C) for a functional unification 
of (C1, C2). 
 

 
- Rem(C1: CMP) 
- Rem(C2: CMP) 
- Add(C: CMP) 

 
 
 

 

 
 

Active  
Displace-

ment 

 
Active Displacement replaces an existing 
component (C2) with a new component 
(C3) while maintaining the interconnec-
tion with existing components (C1, C2). 
 

 
- Add(C3:CMP) 
- Rem(C2:CMP) 
- Add(X2 (C2, C3): CON) 
- Rem(X1 (C2, C1):CON) 

 
 
 

 

 
 

Child  
Creation 

 
Child Creation creates a child component 
(X1) inside an atomic component (C1), 
such that C1 is a composite component 
now. 
 

 
- Add(X1: CMP) 
- Mov(C (X1): CMP) 

 
 
 

 

 
 

Child  
Adoption 

 
Child Adoption adopts a child component 
(X1) from a composite component (C1) 
to an atomic component (C2). 
 

 
- Rem(C1 (X1): CMP) 
- Add(C2 (X1): CMP) 

 
 
 

 
 
 
 

Child  
Swapping 

 
 
Child Swap enables the swapping of the 
child components (X1, X2) between 
composite components (X1, X2). 
 

 
- Rem(C1 (X1): CMP) 
- Add(C2 (X1): CMP) 
- Rem(C2 (X2): CMP) 
- Add(C1 (X2): CMP) 

 
 

 
 

 
 

 
 
B) Change Primitive vs Change Pattern 
After presenting the pattern model (cf. Figure 2) and examples of change pat-
terns (cf. Table 1), we now distinguish between change primitives and change 
patterns. A primitive change ( primitive) is the most fundamental unit of architec-
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ture evolution that supports the addition, removal and modification of individu-
al components and their ports and connectors with their endpoints [5]. Change 
primitive are expressed as below: 

 

 

 

For example, in Table 1 (cf. ComponentMediation - pattern 1), the addition 
(Addcomponent) of an individual component, as CM that is of type CMP is ex-
pressed as change primitive:  Add(CM : CMP). However, change primitives 
have following limitations:  

- Explicit Enforcement of Individual Constraints: unlike pattern-based 
change representation in Figure 2, a primitive change is directly applied 
to the architecture elements and it does not enforce any constraints such 
as component must contain a port. The architects/designers must rely on 
their knowledge about hierarchy of elements to manually add a port after 
component addition to maintain architectural composition.   

- Limited Reuse of Change: a primitive change offers a limited reuse with 
addition or removal of individual components and connectors. For exam-
ple, considering ComponentMediation pattern above; when there is a 
change affecting multiple components and connectors such as compo-
nent integration each of the individual changes must be explicitly speci-
fied. This can prove labourious and error-prone when the total number of 
changes to be implemented are large and complex.  

In contrast to change primitives, as modeled in Figure 2 and illustrated in Ta-
ble 1 a change pattern abstracts change primitives and constraints to enable 
composite changes such as integration, composition, replacement of a collec-
tion of components and connectors. We further discuss the benefits of a pat-
tern-based change in the context of a scenario in Table 2. In Table 2, the in-
stance of Active Displacement pattern (cf. Table 1) is provided with details of 
pattern application on P2P-AS architecture (cf. Figure 3). For pattern exam-
ples in Table 2, we use the terminologies atomic component that is a compo-
nent with no internal sub/child components. A composite component is a 
component composed of one or more sub/atomic/child components by exploit-
ing the component composition concepts of software architectures [6, 18]. 

primitive := { 
                (Addcomponent, Addconnector, Addport, Addendpoint),  
                 (Removecomponent, Removeconnector, Removeport, Removeendpoint),  
                (Modifycomponent, Modifyconnector, Modifyport, Modifyendpoint), 
} 
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3-3 EVOLUTION TOOL3 

The tool supports pattern-based and automated evolution of the architecture 
model. It is composed of an Interface and a Core. The Interface allows the 
designer/architect to import the architecture model and select the change pat-
terns from the catalogue, as well as export the evolved model. The core pro-
vides the necessary functionality by applying constraints and operators and 
using a pattern to evolve the architecture model. The tool first interprets archi-
tecture model (Figure 4 A)) through its architectural descriptions (Figure 4 B)), 
then applies changes to descriptions and finally presents the evolved model to 
the architect. The tool is developed as a plugin for possible future extensions 
and utilising the resources of an integrated development environment (IDE). In 
contrast to a standalone system, the plugin can exploit the features and other 
plugins from IDE for stability, reusability of IDE resources, public availability 
and possible future extensions [8]. 

The relationships of elements of Evolution Tool with Architecture Model and 
Change Pattern are specified as: Evolution Tool Import Architecture Model, 
Change Pattern, as importing the necessary elements before evolution as well 
as Evolution Tool Export Architecture Model, exporting the new architecture 
model after evolution. We provide details of tool-support for pattern-driven and 
automated evolution in Section 4. 

 

Table 2 Application of Child Creation Pattern 

Child Creation Pattern 

Pattern Intent: create a child component (X1) inside an atomic component (C1), such that C1  

X1 as C1 contains (  ) X1 and C1 is a composite component now. 
Evolution Scenario: In Figure 3 P2P-AS architecture, client has to first Authenticate itself in 
order to request the Appointment. Moreover, the Appointment components must maintain a list of 
authenticated clients from Authenticate component. As the number of requesting client grows 
system performance decreases. The problem reflects: how to evolve the architecture of the 
appointment system to maintain its performance under increasing client requests? 
 
Solution: A possible solution to minimize excessive component interaction is with unification of 
the authentication and appointment functionalities (eliminating an explicit authentication and re-
questing for authenticated client’s messages). The Child Creation pattern from the catalogue (cf. 
Table 1) can provide a solution (abstracting changes and constraints) with a high-level overview. 
The pattern creates the Authenticate_Request component as a child of Appointment_Schedule 
component. Such a change minimizes redundant interactions and also facilitates future modifica-
tion easily. 
 
Pattern Overview: 
The example scenario is provided in Figure 4 as an instance of the ChildCreation pattern from 
Table 1. 
 
    - Figure 4 A) represents the source architecture model of P2P-AS (on left – preconditions) and 
its evolution (arrow representation) as a consequence of ChildCreation Pattern (on right – post-
 

3 Please note the term Tool in this paper refers to a prototype as a preliminary/proof-
of-concept version for our ongoing work on automated evolution of software architec-
tures. 
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condition). The pattern in Figure 4 A) represents an abstraction with a generic overview of the 
architecture model before and after evolution. 
 
 - The refinement of the changes with addition or removal of individual component and ports in 
Figure 4 B) are reflected as changes in architecture description. In Figure 4 B) the Appoint-
ment_Schedule component is modified from an atomic to a composite component with fine-
grained representation of change at the component, port, connector and endpoint level to ensure 
architectural composition is preserved. 

 

 
 

 

                           
 
 

 

Figure 4 Evolution Scenario – Evolution of Child Creation Pattern To Evolve P2P-AS. 

 

4- PATTERN DRIVEN AND TOOL SUPPORTED EVOLUTION OF 
SOFTWARE ARCHITECTURES 

In this research we hypothesised that by unifying change patterns and tool 
support, architectural changes can be (i) reused and (ii) automated for evolu-
tion of software architectures. In this section we aim to evaluate the hypothe-
sis and demonstrate pattern-based and tool supported change management 
to evolve P2P-AS architecture. The evolution of the P2P-AS architecture from 

A. Evolution of Architecture Model (abstract view) 

B. Changes in Architecture Description (refinement) 
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Figure 4 to a client server model in Figure 5 enables multiple clients, simulta-
neously requesting appointment schedules from server. We demonstrate the 
usability of the tool to automate pattern-based changes and enabling the de-
signer/architect to intervene, if and when required. We further evaluate the 
relative measure of reusability for change primitive vs changes pattern in Sec-
tion 5. An overview of the pattern-based and tool-supported evolution process 
is presented in Figure 5 that comprises of three primary activities including (i) 
importing and exporting architecture descriptions, (ii) specification of architec-
ture changes, and (iii) application of change pattern. In developing a software-
intensive system (i) process illustrates what needs to be done, and (ii) activi-
ties in the process demonstrate how it is done [23].  All activities of the evolu-
tion process are detailed in Figure 5.  

4-1 ACTIVITY I – IMPORTING/EXPORTING ARCHITECTURE 
DESCRIPTIONS 

It allows us to import the architectural descriptions, known as source architec-
ture model that can be evolved. Once the changes are applied, the evolved 
architecture model known as the target architecture can be exported from the 
tool to share its descriptions. For example, in Figure 5 A) the descriptions for 
source architecture model (from Figure 4) are imported that consist of two 
atomic components Appointment_Request and Authenticate_Request, whereas the 
Appointment_Schedule is a composite component composed of Authenti-
cate_Request. The Appointment_Request and Appointment_Schedule are intercon-
nected using requestAppointment connector. In Figure 5 A), the architect views 
source architecture model as the graphical representation on right with com-
ponents and connectors view on the interface of tool, while source architec-
ture description as xml representation on left are manipulated in the core of 
the tool.  The architecture model view also allows the architect to add or re-
move any architectural components and connectors by using the Edit Archi-
tecture Model option. 

4-2 ACTIVITY II – SPECIFYING ARCHITECTURAL CHANGES 

It allows the architect to specify the (i) intended change(s) and (ii) any con-
straints on the source model – also referred to as user intervention in the evo-
lution process.   
 
- Specifying Change Intent: currently, the intent of change is specified by 
means of some predefined change rules (e.g. integration, composition, de-
composition) of architectural components. For example, in Figure 5 B) the 
architect is provided with a user interface to specify the ‘integration of a medi-
ator component between the Appointment_Request and Appointment_Schedule’. 
After selecting the intent of change, the architect specifies the impact of 
changes in terms of selecting the components to be evolved as the addition of 
an atomic component Appointment_Server. They can specify if they want to add 
an atomic or composite component by checking/unchecking the Composite 
option. 
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In the architecture model, the sub-architecture that is candidate for change is 
selected by the designer/architect. The sub-architecture is selected based on 
a declarative specification of the architectural changes by means of prede-
fined change discussed above. For example, the integration of new architec-
tural component named Appointment_Server between two existing components 
Appointment_Request and Appointment_Schedule is specified by the user as:  

Integrate(Appointment_Server, (Appointment_Request, Appointment_Schedule)  CMP). 

The rule specifies that existing sub-architecture in terms of two architectural 
elements as components Appointment_Request, Appointment_Schedule, whereas 
Appointment_Server is a new component to be integrated in the sub-architecture. 

- Specifying Change Constraints: after specifying the changes on architecture 
model, the architect can also specify the constraints as the post-conditions of 
the evolution, while the preconditions are automatically computed based on 
the source architecture descriptions. For example, the architect specifies post-
condition as the integration of a new component Appointment_Server along with 
two connectors requstAppointment interconnecting Appointment_Server and Ap-
pointment_Request where requestSchedule binds Appointment_Server and Appoint-
ment_Schedule components. Once the changes are specified the architect can 

choose to Select Patterns to retrieve the most appropriate patterns from the 
catalogue (cf. Table 1). The patterns are selected automatically based on the 
preconditions and post-conditions. These pre/post-conditions specified by the 
architect are expressed as XML constraints and are matched with the 
pre/post-conditions of a pattern (cf. Figure 4). 

It is vital to mention if a pattern is not found such as pre/post-conditions speci-
fied by the architect do not match to those of pattern, the tool allows the archi-
tect to manually specify the changes (Edit Architecture Model option as a 
case of change primitives [5]). Matching of the preconditions is a mandatory 
condition for the selection of the sub-architecture for change implementation. 

4-3 ACTIVITY III – APPLYING CHANGE PATTERNS 

Once changes are specified (Activity II) on architecture model (Activity I); 
based on change specification and constraints, the appropriate pattern is dis-
played with its impact on the architecture. For example, in Figure 5 C) the 
Component Mediation is selected that enables the integration of Appointmrnt_Server 
to mediate between Appointment_Request and Appointment_Schedule components. 
The view in Figure 5 C) helps an architect to visualise the impact of a pattern 
on the architecture to decide if it results in desired impact of change on the 
model or not. The user can enable pattern refinements by adding the compo-
nent ports and refinement can be seen as an auxiliary step to pattern applica-
tion - adding port level details to architectural components (cf. Figure 4).  Fi-
nally, when the architect aims to apply pattern he/she can click on Apply Pat-
tern to execute changes, otherwise pattern application can be cancelled and 
no change will be applied to the source architecture model. 
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 Figure 5. Overview of the Pattern-based and Tool Supported Evolution. 

 

5- EVALUATIONS, LESSONS LEARNT AND VALIDITY THREATS 

Based on the details in Section 4 that focused on demonstrating tool support, 
we now report results of evaluation for pattern-based reuse of the architectural 
changes. 

5-1 EVALUATING PATTERN-BASED CHANGE REUSE 

We utilise the ISO/IEC 25010:2011 quality model to evaluate the reusability of 
architectural changes [3]. The work on pattern-based evolution is a continuous 
effort, therefore; results presented here and elsewhere [11, 25] represent an 
incremental effort for a step-wise evaluation of the overall solution – i.e; pat-
tern discovery to complement pattern application [7]. Reusability as a sub-
characteristic of maintainability represents the quality of solution to enable the 
reuse of existing resources in terms of knowledge/expertise to address the 
recurring evolution tasks [3]. To evaluate reusability of architectural evolution, 
we use comparison of primitive vs proposed pattern-based changes with the 
following metric adopted from [24] and extended for our needs: 
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Total Change Operations (TCO) - to quantify the required efforts for archi-
tectural change implementation, we derived and used the TCO metric as “the 
total number of architecture change operations required to resolve an archi-
tecture evolution scenario. TCO can be viewed as an inspiration from the Line 
of Codes (LOC) metric that estimates the total lines of code required to 
achieve the desired functionality or represent the size or magnitude of source 
code. In contrast, the TCO measures the total number of change operations 
(i.e; operational size of evolution). To measure a relative reusability (Primitive: 
PrimitiveTCO vs Pattern: PatternTCO), we formulate the ratio as follows:  

(1 - PatternTCO / PrimitiveTCO) X 100 

Figure 6 provides a comparison overview of the relative number of change 
operations for implementing a specific change as resolving an evolution sce-
nario. For example, to support the change intent that supports integration of 
components the Component Mediation pattern (cf. Figure 5) requires three 
operators in terms of the preconditions, pattern application and the post-
conditions also reducing the effort of pattern selection performed by the tool. 
In contrast, to implement similar change the change primitives require at-least 
a total of five operations to add the required component, their interfaces and 
connectors. In addition, with change primitives the designer/architect must be 
well aware of available patterns to rely on his knowledge for the selection of 
the most appropriate patterns that is a significant challenge for novice archi-
tects [15]. In this scenario, the ratio of reuse is given as R = 1 – (3/5) x 100 
calculated as 40%. To generalise the findings, a summary of the comparison 
for patterns vs primitives (using TCO) is provided in Figure 6, we measure a 
total of 34% approx. reuse by applying patterns on the P2P-AS evolution case 
study. Based on the summary of results in Figure 6, we provide an overview 
of the comparative analysis for TCO for primitive and pattern-based changes. 

Pattern-based changes take approximately 30% – 35% of change operations 
compared to primitive changes. However, pattern-based change does not 
support a fine granular change representation. An increase in the percentage 
reuse is (i) directly proportional to an increase in the total number of changes, 
and (ii) inversely proportional to change implementation efforts as primitive vs 
pattern based change.   

Consideration for Total Time Taken: Another evaluation is based on the 
time efficiency as the time taken for change implementation that is considered 
as part of future evaluations. We have primarily focused on exploiting patterns 
as reusable solutions to support design-time evolution; however, to support 
runtime evolution patterns must be validated to support cost/time-efficient im-
plementation of changes as part of our on-going and future research. 
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5-2 LESSONS LEARNT 

We discuss a few lessons learnt based on architectural evolution and the les-
sons can also indicate future refinements of the solution. We generalise the 
presentation such that any architecture models with component-connector 
view that needs to be evolved can also benefit from our observations and les-
sons.  

Lesson I - Granularity Conflicts Reusability: In primitive vs pattern-based mod-
ifications, there is a trade-off between the granularity and reusability. Granu-
larity of architectural modification refers to the completeness of modifications 
such as adding configurations with components that contain ports, etc. Reus-
ability of architectural changes refers to reuse of generic modification opera-
tions. In contrast to primitive architectural changes, pattern-based changes 
support reuse with enhanced efficiency of modification process resulting in an 
average 33% reuse. However, pattern-based changes do not support a fine-
granular change implementation. A possible solution is to introduce the pat-
tern refinements that extend the higher-level architectural components and 
connectors as composite elements with interfaces and endpoints respectively 
as atomic elements [17].  

Lesson II – Consistency vs Reusability of Changes: The role of pattern cata-

logue is central in promoting patterns for reuse and consistency of architec-
tural modification.  

 

Figure 6. A comparison of Total Change Operations - Primitives vs Patterns. 
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During architectural modifications, the structural consistency of architecture 
model must be maintained by preserving the architectural hierarchy (part-
whole relation) as modeled Figure 2. For example, a component that is not 
connected to another due to a missing port, endpoint or connector is called an 
orphaned component that violates architectural quality and structure. Or-
phaned component results in counter-productive and negative impacts of pat-
terns that may result in violating architectural composition. The model in Fig-
ure 2 is the basic mechanism to confirm a valid pattern and architecture mod-
el. In addition, the invariants help in preserving the required architectural 
structure and properties in an attempt to minimise the violation of architectural 
composition.  

Lesson III – The Needs for Usability Evaluations from Practitioners: Usability 

as a system quality must support the attributes like learnability, operability, 
etc. by its users [3]. In Section 4, we only manage to demonstrate the tool’s 
usability, while evaluating usability requires an empirical evaluation by engag-
ing multiple designers/architects to utilise the tool and report their experiences 
about its usefulness. Given the scope of research we envision usability evalu-
ation based on experts’ feedback as essential criteria to further strengthen the 
solution and also as one of the dimensions of future research.  

5-3 VALIDITY THREATS 

In this section we discuss the threats to the validity of this research that can 
become possible limitations and provide an indication of future work that can 
possibly minimise these threats.  

Threat I – Limited Data for Architecture Evolution: A limited number of existing 
change patterns and a small case study to evaluate pattern applicability rep-
resents a validity threat. The prospects of evaluating the effectiveness of our 
solution for industrial case studies requires more data and validation to com-
ment on the benefits of solution in the context of evolution for industrial soft-
ware. Specifically, in an industrial scale software architecture, the evolution 
usually takes place over long periods that span months, years and often dec-
ades [1, 13]. In the general context, the research aims to provide a foundation 
with a framework that integrates architecture change mining for a continuous 
acquisition of knowledge as patterns that support reusability and efficiency of 
the change execution process. 

Threat II – Accuracy of Pattern Selection: During pattern-based architecture 
evolution, accuracy of the pattern selection refers to solution’s ability to select 
the most appropriate change patterns from a pattern collection. The possible 
threat to a more rigorous validity of pattern selection is the limited number of 
patterns in the pattern collection (cf. Table 1). This threat has a direct impact 
on selecting the most appropriate patterns from pattern collection. Currently, 
we have a total of 7 change patterns that represent a relatively limited number 
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of patterns. As the number of change patterns in the pattern catalogue grows 
it may have an impact on the precision of pattern selection. 
 

6- RELATED RESEARCH 

A recent study on classification of architectural evolution research in [12] has 
highlighted [18] as one of the earliest studies, published in 1995 to support 
software evolution and refinement through its architecture. Since then, archi-
tectural evolution research has progressed and matured over two decades 
with a collective impact of research highlighted in recent studies [4, 12]. We 
specifically position our contributions in the context of reusable (Section 6.1) 
and automated (Section 6-2) evolution that represent two of the vital challeng-
es both from academic and from industrial perspective [12, 14]. There is no 
existing solution on unifying patterns and tool support for architectural evolu-
tion. 

6-1 REUSABLE CHANGE MANAGEMENT FOR SOFTWARE 
ARCHITECTURES 

A) ACADEMIC RESEARCH 
Recently, the concepts of change patterns [19, 20, 26] and evolution styles [6] 
have emerged as solutions - focused on applying reusable knowledge and 
expertise - to address the recurring problems of architectural evolution. 
Change patterns are further classified as patterns that support the (i) design-
time evolution of requirements and corresponding architecture model and (ii) 
adaptation patterns that support runtime evolution of architectures [19, 20]. 
The notion of change patterns is inspired by design patterns, however; instead 
of design concerns, change patterns specifically address architectural mainte-
nance and evolution as corrective, adaptive and perfective changes as per 
ISO/IEC change taxonomy [20]. In contrast, evolution styles propose evolution 
planning to derive reusable evolution paths [6]. An evolution path represents a 
reusable strategy to plan architectural evolution based on the cost, time, and 
efforts of evolution. Evolution styles are based on the classical concept of ar-
chitecture styles. 

 
B) INDUSTRIAL STUDIES AND SOLUTIONS 

In an industrial scale evolution, that is driven-by various types of constraints 
including time and economic aspects; there is a growing interest on exploiting 
potentially reusable changes that replace ad-hoc and once-off changes. One 
of the recent examples is [14] that support the reuse of adaptation policies to 
support run-time evolution of an industrial system called Data Acquisition and 
Control Service (DCAS). DCAS system monitors and manages highly popu-
lated networks of devices in renewable energy production plants. The re-
search has demonstrated the reuse of recurring adaptation strategies that 
minimised about 40% of the efforts for architecture evolution compared to an 
ad hoc and once-off change implementation. In [13] an empirical study of 
change requests has been conducted based on four different releases of a 
large telecom system. The findings of the study highlights that change reuse 
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have resulted in an (i) increased maintainability, testability and overall quality 
with (ii) decreased efforts and time for future implementation of changes. 
 

6-2 AUTOMATED EVOLUTION OF SOFTWARE ARCHITECTURE 

In comparison to reuse, the automation of architecture change management 
has achieved much less attention with only notable studies [21, 22]. Patterns 
facilitate reuse, however; a lack of automation burdens an architect with man-
ual – exhaustive, error-prone and time-consuming – efforts to plan and exe-
cute evolution [19]. Automation of such tasks seems ideal, however; it entails 
certain challenges like complexity, type of architecture and evolution that must 
be supported by a tool [8]. Moreover, as identified in [21] architecting and evo-
lution are more than just enabling the automation; instead an appropriate tool 
support must complement the user/architect’s intervention to guide the 
change management process.  

Enabling evolution and its automation require iterative development of solu-
tion. Specifically, evolution reuse relies on strong theoretical foundations of its 
usefulness before developing any tools to support automation. A recent study 
is considered as the first attempt to establish evolution styles as artifacts of 
reuse [6]. Once the foundation and usefulness have been identified that pro-
vides the requirements and needs to develop a tool for an automated specifi-
cation of styles [22].  The research on evolution of automated production sys-
tems highlights the challenges and futuristic research dimensions of continu-
ous change management of industrial scale software systems [27]. The study 
identifies that, in order to support a continuous maintenance and evolution of 
complex and real world software, automation can be influential for time and 
cost-effective change management.  

Comparison Summary: Existing vs Proposed Solution - In conclusion, the 
proposed solution generally lies at the intersection of software reuse and au-
tomated software engineering. First, the proposed solution is relevant to re-
search that focus on avoiding ad-hoc changes with reusable and best practic-
es for software evolution [6, 14]. In contrast to these studies, the proposed 
solution promotes a two-step process for reusable evolution with (i) change 
pattern discovery, (ii) exploiting discovered patterns from [15, 25] to enable 
reuse of architectural changes. However, in contrast to [14]; our solution is 
focused on design-time rather than runtime evolution that can be considered 
as a concern for future research. Moreover, we aim to complement the exist-
ing research with reuse and automation of architecture evolution [21, 22]. Pat-
tern languages and pattern catalogues for architecture evolution can benefit 
from tool support [15]. We demonstrated that patterns alongside tool support 
provide an effective mechanism for reusable and automated change support, 
while incorporating the architect’s intervention and feedback is vital to guide 
the evolution process. We have also followed the same two step approach as 
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(i) establishing and discovering architecture change patterns (previous work 
[11, 25], cf. Section 3), followed by (ii) work in this paper that supports applica-
tion of discovered patterns to automate evolution (cf. Section 4). 

7- CONCLUSIONS 

In this paper, we propose to support changes in software architecture by 
means of change patterns exploited with an appropriate tool support. The ex-
isting research have exploited patterns as artifacts of reuse or tool support to 
enable automation, however; there is no research to unify pattern-driven and 
tool-supported architectural evolution. We have focused on the unification of 
the empirically discovered change patterns and systematically developed tool 
support to enable reusable and automated evolution of software architectures.  

The preliminary results of evaluation suggest that pattern-based changes en-
able reuse but lack a fine-granular change execution. The granularity of 
change representation refers to completeness of change execution on archi-
tectural elements. Specifically, architecture change patterns abstract the primi-
tive changes that add/remove/modify components and connectors into reusa-
ble pattern-based changes to compose/merge/replace components and con-
nectors. Tool-support facilitates automation of architecture change implemen-
tation, however; user intervention is critical to guide architectural evolution. 
We have also identified some validity threats like availability of data and accu-
racy of pattern selection. Our future work primarily focuses on acquisition of 
data and involvement of practitioners for further validations and more objec-
tive interpretation of the results.  
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