

Architecture Level Dependency Analysis of
SOA Based System through Π-Adl

Pawan Kumar(1), Ratneshwer(2)

(1) Department of Computer Science (MMV), Banaras Hindu University (Varanasi)
E-mail: pawan.bhuphd@gmail.com

(2) Department of Computer Science (MMV), Banaras Hindu University (Varanasi)
E-mail: ratnesh@bhu.ac.in

ABSTRACT

A formal Architecture Description Language (ADL) provides an effective way
to dependency analysis at early stage of development. Π-ADL is an ADL that
represents the static and dynamic features of software services. In this paper,
we describe an approach of dependency analysis of SOA (Service Oriented
Architecture) based system, at architecture level, through Π-ADL. A set of al-
gorithms are also proposed for identification of dependency relationships from
a SOA based system. The proposed algorithms would be useful to all stake-
holders of SOA based system directly or indirectly. Finally, we automate our
approach with a tool developed by us and named ‘DA-SOA’ (Dependency An-
alyzer for SOA Based Systems).

Keywords: Architecture Description Language, Dependency Analysis, Service
Oriented Architecture, Software Architecture.

1- INTRODUCTION

Software architecture languages (ADLs) provide a means to formally describe
software systems at a high level of abstraction. An architecture description
should provide a formal specification of the architecture in terms of compo-
nents and connectors and how they are connected to each other. They cap-
ture high level structure and/or behavior of the system, thus provide a basic
for coarse grain static analysis [1]. ADLs are intended to play an important role
in development of software by composing source modules rather than com-
posing individual statements written in conventional programming languages
[2]. Service Oriented Architecture (SOA) is a new form of distributed software
architecture. In SOA, the coarse-grained, discoverable, loosely coupled, au-
tonomous services are its basic constitutional units. This makes the SOA dif-
ferent from other architectures for its special architecture elements (services)
and its dynamic and evolving structure. An ADL for SOA based system may
provide information about interaction among the services, behavior of individ-
ual services and prediction of quality attributes. It may also help in future
maintenance and comparison of alternative architectural solutions.

In a service based system, since services are loosely coupled together and
independently evolved, the change in one service may not detected automati-
cally by other services. Therefore, each change requires a careful analysis of

Architecture Level Dependency Analysis Kumar and Ratneshwer

59

its impact on other dependent services [3]. The analysis of architectural de-
pendency should be based on depicting the true and holistic complexity of
software architecture rather than giving two way relationships among compo-
nents. If the architecture is complex then it will not be easy to understand and
consequent results will appear in designing and coding of the system. Under-
standing architectural dependencies is about architectural knowledge, not just
a question of element decomposition [4]. If a group passes SOA information to
their peers by simply handling over unstructured information it can easily be-
come an obstacle for SOA. The information may not be present in the reposi-
tory, or if it is, it may be too technical for some audiences; unstructured mod-
els any need to be produced manually, over and over again, which is time
consuming [5].

In this paper, we proposed an approach of dependency identification, at archi-
tecture level, for a SOA based system by applying Π-ADL. Recently, a number
of ADLs have been proposed such as ACME [6], Rapide [7], Unicon [8] and
Wright [9] to support finally representation and reasoning of software architec-
ture. While most ADLs focus on describing software architectures from a
structural viewpoint, Π-ADL focuses on formally describing architectures en-
compassing both the structural and behavioral viewpoints [10]. Various types
of dependency relationships for a SOA based system, which may be observed
at architecture level, are described. A set of algorithms are also proposed for
identification of dependency relationships from a SOA based system. The
proposed algorithms would be useful to all stakeholders of SOA based system
directly or indirectly. Finally, we automate our approach with a tool developed
by us and named ‘DA-SOA (Dependency Analyzer for SOA Based Systems’.

The main contributions of the paper are as follows:-

 Description about the various service dependencies that can be
observed at architecture level.

 A new methodology to perform dependency analysis of SOA
based system at the architecture level using Π-ADL.

 Develop algorithms for identification of the various dependencies

 Design and development of a tool ‘DA-SOA’ for extracting
dependency relationships of a SOA based system.

This rest of the paper is organized as follows. A brief discussion of related
work is given in section 2. In section 3, we mentioned the importance of archi-
tectural level dependency analysis. In section 4, we briefly describe Π-ADL
and explained why Π-ADL is more appropriate for this purpose. In section 5,
we described about the various service dependencies that can be observed at
architecture level. In section 6, algorithms for identification of the various de-
pendencies are given. In section 7, we describe Design and development of a
tool ‘DA-SOA’ for extracting dependency relationships of a SOA based sys-
tem. Finally we conclude in section 8.

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

60

2- RELATED WORK

In the literature, the problem of software dependence analysis has been stud-
ied widely in the context of conventional software, component based systems
etc. Substantial work has been reported regarding the dependency analysis.
Here, we limit our discussion only to those efforts that are closely related to
SOA based systems.

Stafford and Wolf [1], in their paper, have introduced the general challenges of
performing dependence analysis on software architecture descriptions, and
presented a dependence analysis technique that they have developed for ex-
ploring these challenges. They have demonstrated the technique through an
example application of a prototype tool named ‘Aladdin’ that provides auto-
mated support for dependency analysis. In their approach they cover conven-
tional software and focused on the direct inter-component dependencies only.
Tolksdorf [11], in his paper, proposed a Dependency Mark-up Language to
capture dependencies amongst activities and generalization/specialization
amongst web services. They have focused on service flow in software pro-
cesses and used control flow as dependency specification. The resulting
specification is more abstract than a concrete control flow and a more specific
service description that a functional interface. Ensel and Keller [12], in their
paper, presented web based architecture for retrieving and handling depend-
ency among web services with XML, XPath and RDF. Its core component is a
dependency query facility allowing the application of queries and filters to de-
pendency models. They focused on dependency representation based on the
resource description framework. Basu, Casati and Daniel [13], in their paper,
discussed the problem of discovering dynamic dependencies among web ser-
vices and proposed a solution for the automatic identification of traces of de-
pendent messages, based on the correlation of messages exchanged among
services from unstructured message log. This effort is based on analysis of
service execution data to discover dynamic dependencies among services.
Espinha, Zaidman and Gross [14], in their research paper, demonstrated that
how the runtime topology of a SOA basd Syatem can be reverse engineered
from observing its operations, and investigated which services are available
and how they depend and interact with each other. Their proposed runtime
topology reverse engineering approach is implemented in a tool called Serviz.
SOA Dependency Analyzer [15] is a tool for graphical visualization of the de-
pendencies between the processes (BPEL-WS) and services (Service Bus).
This tool was developed for easy and simple understanding of the dependen-
cies between services and processes, sometimes in very complex environ-
ments SOA. It is built on Eclipse RCP (SWT) framework and to visualize the
dependency graph used Eclipse GEF/ZEST framework. sCrawler is a de-
pendency tracking utility that tracks dependencies and presents information
about them in an application-agnostic manner. It maps the design time de-
pendency of deployed SOA artefacts in an OC4J container [16]. These two
tools extract dependency relationships at implementation level. Trigos [17], in
his thesis, proposed a model to analyze different approaches for dependency
analysis amongst services in a business process. He has developed an algo-

Architecture Level Dependency Analysis Kumar and Ratneshwer

61

rithm that detects dependencies in the context of their sequence flow and ne-
gotiated SLAs. This effort identifies the dependencies at design level.

It can be observed from the above efforts that several works are available to
analyze dependencies in a SOA based system at design and implementation
level. But very few efforts are available who discussed dependency issue for
SOA based system at architecture level. We made an attempt to extend the
above contributions further by proposing an approach to identify static and
dynamic dependencies, in a SOA based system, at architecture level.

3- ARCHITECTURE LEVEL DEPENDENCY ANALYSIS OF SOA
BASED SYSTEMS

SOA based systems are based on the collaboration of reusable services, for
which internal source code is not accessible, thus provides limited code visibil-
ity at implementation level. Architectural design deals with the quality attrib-
utes and structural requirements of the system/elements. Dependency analy-
sis at architectural level, in SOA based system, plays crucial role to develop
complex system. Architecture level analysis is being popularized in the current
complex software development scenario. There are some major advantages
of dependency analysis of SOA based system at architecture level such as
early detection of bugs, communication among stakeholders, help in early
design decisions, facilitate in maintenance etc.

Modeling architectural dependencies have three important dimensions i.e.
type of dependency, source of dependency and degree of effect. Understand-
ing the source of a dependency is an important factor in maintaining a coher-
ent architecture [18]. For architecture level dependency analysis, required
information may be text based architecture description, formal language as
ADLs and graphical representation as Business Process Modeling Notation
(BPMN) and SOA-ML (Service oriented Architecture Modeling Language).
Text is the primary means for documenting requirement specification [19].
From the analysis of text based architecture description, existing services and
components in SOA based system can be identified. What types of relation-
ship among services exist can be identified. Architecture Level Dependency
Analysis using requirement document can be done either manually or auto-
matically. In manually, service specifications are extracted using analyzing the
requirement document. In automatically process requirement specifications
can be used as an input to the dependency analyzer tool. Such tool scans
services/components from requirement documents and shows the depend-
ence relationship among services. Business Process Modeling Notation
(BPMN) [20] and SoaML [21] can be used to describe software architecture
graphically. To understand the Software Architecture using diagrams is easy
for all stakeholders. Conversion from BPMN to Business Process Execution
Language and pi- ADL is easy. SOA-ML has different types of diagram which
is suitable for modeling of SOA based system. Some diagrams are service
interface diagram, service contract diagram, service architecture diagram,
service category diagram, etc.

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

62

ADLs (Architecture Description Languages) are being popularized for describ-
ing software architecture formally. There are a number of ADLs available to
describe software architecture formally. Some popular ADLs are ACME [6],
Aesop [22], ArTek [23], Darwin [24], MetaH [25], Rapide [26]. Different ADLs
have different approaches. ADLs can be used as input of Architecture level
dependency analyzer tool. Most of ADLs work for static system. SOA based
system is dynamic by nature. Π-ADL is more suitable for describing SOA
based system [10]. Since ADLs are formal language in nature, so it has very
less ambiguity compared to requirement documents. In Π-ADL, service speci-
fications and their relationship is described formally. So to extract dependency
from Π-ADL by scanning services becomes easy.

4- Π-ADL - AN ARCHITECTURE DESCRIPTION LANGUAGE

Architecture Description Languages (ADLs) are being used for decades to
describe software architecture. A number of ADLs have been developed and
being used to describe the architecture of SOA based systems. In this paper,
Π-ADL has been used to describe the architecture of a SOA based systems.
We have chosen Π-ADL for this purpose because it describes static and dy-
namic features of architecture. Π-ADL has been designed under the supervi-
sion of Flavio Oquendo in ArchWare European Project in France. It is a formal
ADL which is based on mathematical concept ‘higher ordered typed π-
calculus’. Direct architecture description in Π-calculus of a software system is
complex because of mathematical symbol and rigorous mathematical con-
cept. Since architecture description of software system is a formal document
which should be understandable by every stakeholder. Majority of stakehold-
ers may not be mathematically sound. For majority of stakeholders to under-
stand architecture description in Π-calculus becomes tedious [10, 27].

Π-ADL is based on π-calculus. Basically architecture can be classified as
static architecture, dynamic architecture and mobile architecture. In static sys-
tem, architecture does not evolve during execution of the system. In dynamic
system, architecture can evolve during execution of the system. In mobile sys-
tem, services can logically move during execution of the system. Π-ADL pro-
vides the essential constructs for describing static, dynamic and mobile soft-
ware architectures. It is a formal specification language designed to be exe-
cutable and to support automated verification. Π-ADL supports architecture
description of a software system from runtime viewpoint. In Π-ADL, software
architecture is described in terms of components, connectors, and their com-
position. General principles which guide the design of Π-ADL are formality,
runtime perspective, user-friendliness and executability.

Why Π-ADL is more appropriate for SOA?

To describe the architecture of SOA based system, Π-ADL can be used effec-
tively. Π-ADL has the capability to leverage the benefit of SOA based sys-
tem. In Architectural term, services are the architectural components, mes-
sage passing connections are the architectural connectors, and orchestration
and choreography the architectural configurations of components and con-

Architecture Level Dependency Analysis Kumar and Ratneshwer

63

nectors [28]. Services represent computing entities performing a specific be-
havior within SOA based system and thus they can be specified by means of
Π-ADL abstractions. Π-ADL supports for representing dynamic and evolva-
ble architecture. SOA based system is also dynamic and evolvable system. Π-
ADL provides a notation to represent the abstraction of structural and dynamic
behavior of architecture. It combines predicate logic with temporal logic for
supporting the specification of SOA based system. Predicate logic with tem-
poral logic means that truth value of service depends on time. Π-ADL and its
tool set may be used for formally developing dynamic web service composi-
tion [28]. Π-ADL can be used for modeling the structure and behavior of SOA
based system. It supports for formal description of SOA so that verifying qual-
ity of SOA based system can be automated. It supports automated verification
of structural and behavioral properties of SOA based system. Orchestration
and choreography are two ways of composing web services. Composition of
web services plays a major role in development of SOA based system. Π-ADL
has sufficient constructs to support the composition of services. Π-ADL is able
to provide the description SOA artifacts as business processes, orchestra-
tions, choreographies, and interfaces. Π-ADL is service-oriented, formal, prac-
tical and executable language.

5- TYPES OF DEPENDENCY FOR SOA BASED SYSTEMS

In order to perform dependency analysis in SOA based system, it is required
to identify all dependency relationships. In a SOA based system, the services,
the service consumers, and the relevant service stakeholders have to coexist
in a system and hence they are dependent upon one other [3].Various types
of software dependency are mentioned in literature in context of SOA based
systems. We have considered five types of dependency. Web services, in a
SOA based system, are dependent upon each other through sending and re-
ceiving input and output message. We limit our discussion only for those de-
pendency types that are relevant at architecture level. Some dependencies
relevant to SOA based systems have been discussed below. These depend-
encies are explained with an example of an ‘OnLineBookStore’ website.

5.1 MAIN PROGRAM TO SERVICE DEPENDENCY

Main Program provides interfaces to interact with various services. Many ser-
vices are called by the ‘Main Program’ to do specific activities. Thus Main
Program depends on those services for performing any business functionality.
For example, let P is a main program and s1, s2, s3 are services. P calls s1,
s2, s3 to perform some functionality, then P is dependent on s1, s2 and s3.

This is shown infigure 1 as follow:

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

64

Figure 1. Main Program to Service Dependency

In case of OnLineBookStore website, assume that main program is ‘Online-
BookStore’. OnLineBookStore uses different services as Search, BookInsert,
ShoppingCart etc. Search gives the functionality to main program for search-
ing books based on customer’s interest. BookInsert provides the functionality
to main program for inserting books by user administrator. ShoppingCart takes
order from user. Thus the main program is dependent on Search, BookInsert
and ShoppingCartservices for the purpose of searching the books, take order
and inserting the books respectively.

5.2 COMPOSITE DEPENDENCY

Composite service is a service which is a combination of different services to
perform some functionality. In SOA based system, composition of services is
achieved using orchestration and choreography. Suppose s is a service
which is composition of services s1, s2 and s3. In this case, s is dependent on
services s1, s2 and s3. Service s provides functionality of services s1, s2 and
s3. This can be shown in figure 2 as depicted below:

Figure2. Composite Dependency

In case of OnLineBookStore website, assume that there is a composite ser-
vice: Search. Search service is composed of SearchByBookName, Search-
ByAuthorName and SearchByISBN services. Thus, search service is depend-

P

s1

s3

s2

s

s1

s2

s3

S

Architecture Level Dependency Analysis Kumar and Ratneshwer

65

ent on SearchByBookName, SearchByAuthorName, and SearchByISBN.

5.3 CONTROL DEPENDENCY

Control dependence is a situation in which a service’s execution depends on
another service. A statement in service S2 is control dependent on some ser-
vice S1 if and only if S2's execution is conditionally guarded by S1. Suppose
s1 and s2 are the services and s1 invokes s2 for some function defined in s2
then control goes from service s1 to service s2 in that situation s1 is control
dependent on s2 because s1 waits s2 until and unless s2 finishes its execu-
tion shown in figure 3.

Figure 3. Control Dependency between s1 and s2.

In case of OnLineBookStore website, ShoppingCart, Order and Payment are
three services in which ShoppingCart needs Order Service for fulfill the cus-
tomer’s order and Order Service needs Payment Service for books’ payment.
Service ShoppingCart is control dependent on Order and Order itself is control
dependent on Payment service where service Order needs confirmation about
Payment so control jumps from Order to Payment and after confirmation of
Payment control comes back to service Order for further operation.

5.4 DATA DEPENDENCY/MESSAGE DEPENDENCY

Data Dependency comes under consideration when one service calls to an-
other service and passes some data or messages to another service as input
parameter. In this case the service-that receives data is data dependent on
the service which is sending data. If invoking service gets data from invoked
service as output then the invoking service is data dependent on invoked ser-
vice. Suppose s1 and s2 are the calling and called services respectively. If s1
calls s2 and send some data to s2 as input parameter then in that case s2 is
data dependent on s1. And if s2 returns value or data to s1 then s1 is data
dependent on s2 because s1 waits for the result from the called service s2.
Figure 4 shows Data Dependency by red arrow.

Figure 4. Data Dependency

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

66

In case of OnLineBookStore website, ShoppingCart uses Order Service for
books’s order. ShoppingCart is the calling service calls to service Order and
passes BookInformation as data. In that situation Order is data dependent on
ShoppingCart and Order also sends success or failure transaction result to
ShoppingCart as output. Thus ShoppingCart is data dependent on Order.

5.5 SEQUENCE DEPENDENCY

Sequence Dependency depicts the flow of service dependency and shows
sequence of service execution. Suppose s1, s2, s3 and s4 are the services.
s1 depends on s2, s2 depends on s3 and s3 depends on s4 sequentially.
Figure 5 shows sequence dependency.

Figure 5. Sequence Dependency

Example system OnlineBookStore provides the main interface to the user.
When user wants to order any items from the search interface, requires login
before order any items and makes payment after order, Thus Order service is
sequentially dependent on Login service and Payment service sequentially
depends on Order service.

6- PROPOSED ALGORITHMS FOR DEPENDENCY EXTRACTION
FROM Π-ADL DOCUMENTS

In this section, we have described the proposed algorithms for different types
of dependency (that have been discussed in previous section). These algo-
rithms have been written in pseudo code for better understandability. In each
algorithm, assignment symbol is shown as “” and variables are written in
italics, “ϕ” has been used for empty list. In all algorithms basic input is archi-
tecture description, written in Π-ADL, of the module project “online bookstore”.
Keyword used in Π-ADL has been written in ‘Arial’ font and remaining text in
font ‘Times New Roman’ to differentiate between keywords and other texts
written in algorithm. One special symbol " ∈ "has been used to extract ele-
ment from list one by one in ordered fashion. Algorithms are given in following
subsections.

6.1 ‘MAINPROGRAM TO SERVICE DEPENDENCY’ EXTRACTION
ALGORITHM

This algorithm extracts dependency information of all services that provide
functionality directly to the main program. We have named this algorithm as
‘MainProgramtoServiceDependency’. Architecture description of a module
project ‘online book store’ (a SOA based system) using Π-ADL is taken as in-

s1 s2 s3 s4

Architecture Level Dependency Analysis Kumar and Ratneshwer

67

put. Variable maintoServicetree has been taken as empty list i.e. this variable
is assigned by ϕ (empty list) .We have used three pattern ArchitecturePattern,
ComposePattern and ServicePattern to extract dependency information from
Π-ADL as follows:

ArchitecturePattern:

@"\b(architecture|service)\s+[a-zA-
Z_]\w*\s+(is)\s+(abstraction\((\w+\s*\w+)?\))"

ComposePatern:

@"(compose)\s*[\{]\s*[a-zA-Z\(\)\.\s*]*[^\}]"

ServicePattern:

@"(via)\s+(?<sName>(\w+))\s+(send\(\))"

In the above pattern the symbol @ denotes that there may be special symbol
included in this pattern. \b denotes the ignorance of first consecutive blank
spaces. Architecture or service denotes the keywords used before service
name or architecture name. \s+ denotes for one or more spaces. [a-zA-Z_]
denotes the one letter of lower case or upper case of alphabet or underscore.
W * denotes that alphabets or digits may occur zero or more times.‘is’ and
‘abstraction’ stands for keyword in Π-ADL program. (\w+\s*\w+)? denotes
zero or one time of (\w+\s*\w+).

‘Compose’ in ComposePattern is a keyword which is used to show the com-
position of more than one services. ‘via’ in ServicePatternis a keyword which
is used for interaction using sending and receiving using the keyword send
and receive.

ArchitecturePattern recognizes the following line in Π-ADL:

architectureOnLineBookStore is abstraction()

On the basis of ArchitecturePattern, the Π-ADL program is divided into dif-
ferent blocks which are stored into the variable list ADLProgramPartition. We
have used one variable ServiceList which stores all services by calling proce-
dure GetAllServices(). Explanation about the algorithm GetAllServices has
been given in the last subsection.part is a variable which stores the first ele-
ment of ADLProgramPartition. Since here main program is a main architecture
which calls other services or architectures. So we have taken parent as first
element of ServiceList. Since first element of ServiceList is main architecture
and it calls all the services which are initialized in block part as composition of
services and architecture. ComposePattern has been used to extract the
compose block from the block part. cservice is a variable in which compose
block from block part has been assigned. ServicePattern is used to extract
services from compose blockcsservice. foreach loop has been used to extract
the element from csservice and assigned to variable s. Inside this loop
listServices has been assigned by the elements which is extracted from s on
the basis of ServicePattern.

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

68

Algorithm 1: Proposed Algorithm for ‘MainProgram to Service
Dependency’ Extraction

1. Algorithm: Extract MainProgram to Service Depend-
ency from ADL

2. Algorithm:MainProgramtoServiceDependency()
3. Input : Π-ADL
4. Output :The output will list out all services that

provide functionality to main program i.e. having
MainProgramtoServiceDependency

5. // Start of the Algorithm
6. {
7. maintoServiceTree ϕ;//ϕ is used for empty tree

list
8. // Pattern Matching logic
9. //Architecture Pattern has been used for dividing

the Π-ADL program into blocks
10. ArchitecturePattern

@"\b(architecture|service)\s+\w+\s+(is)\s+(abstrac
tion\((\w+\s*\w+)?\))";

11. // Compose Pattern has been used to extract com-
posed service block of a service

12. ComposePattern @"(compose)\s*[\{]\s*[a-zA-
Z\(\)\.\s*]*[^\}]";

13. // Service Pattern has been used to extract ser-
vice name from composed service block

14. Service Pattern 
@"(via)\s+(?<sName>(\w+))\s+(send\(\))";

15. ADLProgramPartition Split Π-ADL on the
basis of ArchitecturePattern;

16. //Calling of GetAllServices procedure which is
given at the end of this section

17. ServiceListGetAllServices();
18. partADLProgramPartition[0];
19. // Logic for main program to service dependency
20. //This extracts composite service from part in

pi- ADL;
21. cservicegetMatches from part on the basis of

ComposePattern;
22. parentServiceList[0];
23. //This is the main loop for composite service ex-

traction
24. foreach(s∈cservice)
25. {
26. ServicesgetMatches from s on the basis of Ser-

vicePattern;
27. if (Services.Count>0)
28. {

Architecture Level Dependency Analysis Kumar and Ratneshwer

69

29. maintoServiceTree.Nodesparent;
30. foreach(s ∈Services)
31. {
32. childs.sName;
33. maintoServiceTree.Nodes[0].Nodes  child;
34. }
35. }
36. }
37. return maintoServiceTree;
38. } //End of mainprogram to service dependency al-

gorithm

Inside the foreach loop in algorithm an if statement has been used. If number
of elements in Services is more than zero, then maintoServiceTree.Node is
assigned by parent. Again another foreach loop is defined inside if statement.
This loop is used to extract service s1 from list Services one by one. child is a
variable which stores the name of a service s1 by s1.sName on the basis of
ServicePattern. After this maintoServiceTree.Nodes[0].Nodes is assigned by
child. The relationship between main program to services is stored in main-
ServiceTree. Finally mainServiceTree is returned.

6.2 ‘COMPOSITE DEPENDENCY’ EXTRACTION ALGORITHM

This algorithm extracts composite dependency from architecture description of
the module project ‘OnLineBookStore’ written in Π-ADL. The name of this al-
gorithm is CompositeDependency(). The algorithm takes Π-ADL as input and
gives the list of composite dependencies as output and this output is stored in
list CompositeDependencyListTree.

We have taken two lists CompositeDependencyListTree and ServiceList. Ini-
tially both lists are assigned by ϕ (empty list). CompositeDependencyListTree
has been taken for storing all the composite dependency relationship and
ServiceList to store all the services used in the module ‘OnlineBookStore’.
The algorithm Compositedependency uses the pattern matching approach
from architecture description to extract the composite dependency exist in
module. Pattern used in this algorithm are ArchitecturePattern
,ComposePattern and ServicePattern. The explanation about these patterns
has been given in the description of the algorithm MainProgramtoServiceDe-
pendency. CompoiteDependency() calls the algorithm GetAllServices() which
returns all services exist in module ‘OnLineBookStore’. These services are
stored in the list ServiceList.

We have taken ADLProgramPartition as variable of list type. Π-ADL is broken
into different blocks on the basis of ArchitecturePattern. These blocks are
stored into list ADLProgramPartition. Two counters have been taken as
rootcount and j which are initially assigned by 0. Three foreach loops have
been used which are nested. In first foreach loop a variable part has been
used to extract elements from the list ADLProgramPartion one by one taking

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

70

in order. Under this foreach loop a variable ‘a’ has been used to take service
from ServiceList using the subscript ‘j’. We have taken a variable list com-
poseservice in which extractions from part have been stored on the basis of
ComposePattern. Under first foreach loop, second foreach loop has been de-
clared. In control part of second foreach loop a variable ‘cs’ has been used to
extract the element from composeservice. In the body of second foreach loop
a variable list services has been declared. ‘services’ has been assigned by the
elements extracted from ‘cs’ on the basis of ServicePattern.

If the elements in services is greater than 0 i.e. if(services.Count>0) then
CompositeDependencyListTree.Nodes is assigned by’ a’. This ‘if’ statement
has been used in the body of second ‘foreach’ loop. In the body part of if
statement, third foreach loop has been defined as ‘foreach(s ∈ services)’ . In
this loop s is a variable which takes element from services one by one. sName
is used for name of service which is defined in the ServicePattern. Variable b
has been used to store the service name by the statement ‘s.sName’.

Algorithm 2: Proposed Algorithm for Composite DependencyExtractionfrom ADL
program

1. Algorithm: CompositeDependency()
2. Input: Pi ADL
3. Output: The output will list out all composite to

automic or composite service relationship i.e. Com-
positeDependencyList

4. //start of the Algorithm
5. {
6. CompositeDependencyListTreeϕ;// at initial Compo-

siteDependencyList is empty

7. ServiceListϕ; //at
initial ServiceList is empty

8. // Pattern Matching logic
9. //Architecture Pattern has been used for dividing

the Π-ADL program into blocks
10. ArchitecturePattern

@"\b(architecture|service)\s+\w+\s+(is)\s+(abstract
ion\((\w+\s*\w+)?\))";

11. // Compose Pattern has been used to extract com-
posed service block of a service

12. ComposePattern @"(compose)\s*[\{]\s*[a-zA-
Z\(\)\.\s*]*[^\}]";

13. ADLProgramPartitionSplit π-ADL Program on
the basis of ArchitecturePattern;

14. ServiceListGetAllServices();
15. //Calling of GetAllServices procedure which is

defined at the end of this section
16. //Logic for Composite Dependency
17. rootcount0;

Architecture Level Dependency Analysis Kumar and Ratneshwer

71

18. // rootcount has been used for subscripting of
service which is composite service

19. j 0;
20. // j has been used to for subscripting of all

services one by one
21. // using foreach loop member of ADLProgramParti-

tion is assigned to part one by one
22. foreach(part ∈ ADLProgramPartition)
23. {
24. aServiceList[j];
25. composeservicegetMatches from part on the ba-

sis of ComposePattern;
26. foreach(cs∈composeservice)
27. {
28. servicesgetMatches from cs on the basis of Ser-

vicPattern;
29. if (services.Count>0) then
30. {
31. CompositeDependencyListTree.Nodesa;
32. foreach(s∈ services)
33. {
34. bs.sName;
35. CompositeDependen-

cyListTree.Nodes[rootcount].Nodesb;
36. }}
37. rootcount rootcount+1;
38. }
39. jj+1;
40. }
41. returnCompositeDependencyListTree;
42. } // end of composite service dependency algo-

rithm

This line in algorithm ‘CompositeDependen-
cyListTree.Nodes[rootcount].Nodes b’; shows that CompositeDependen-
cyListTree stores the atomic service b to the composite service at rootcount
location. When all foreach loops terminates then all the composite dependen-
cies among services are stored in CompositeDependencyListTree. After that
‘CompositeDependncyTree’ is returned by this algorithm.

6.3 ‘CONTROL DEPENDENCY’ EXTRACTION ALGORITHM

This algorithm extracts control dependency from architecture description of
module OnLineBookStore (SOA based system) which is described in Π-ADL.
We have named this algorithm as ControlDependency(). It takes Π-ADL as
input and gives the output as ControlDependencyList. Control dependency is
the relationship between calling and called services.

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

72

We have taken two lists ControlDependecnyList and ServiceList which are
empty list (ϕ) initially. ControlDependencyList is used to store the control de-
pendence elements exist in the system “OnLineBookStore”. This algorithm
uses two patterns: ArchitecturePattern and CallPattern which are given as
follows:

ArchitecturePattern :

@"\b(architecture|service)\s+\w+\s+(is)\s+(abstraction\((\w+\s*\w+)?\))";

CallPattern:
@"(call|Call)\s+(?<calledname>(\w+))[\(](\w+)[\)](\.)";

Description of ArchitecturePattern is given in the explanation of algorithm
MainProgramtoServiceDependency. CallPatern is used to extract the pattern
of a service call . ‘Call’ is a keyword in Π-ADL which is used to call a service
and calledname is a variable to store the name of called service. ADLPro-
gramPartition stores the block of Π-ADL which is partitioned on the basis of
ArchitecturePattern. Two variables countcontrol and count have been taken
for counting control dependency and services respectively. Two foreach loops
have been used which are nested. First foreach loop as foreach
(part∈ADLProgramPartition) in which variable part has been used to take el-
ements from ADLProgramPartion one by one in order.

Algorithm3:Proposed Algorithm for Control Dependency Extraction

1. Algorithm: ControlDependency()
2. Input: Π-ADL
3. Output: The output will list out the service and

relationship with called services
i.eControlDependencyList

4. // Starting of Algorithm
5. {
6. ControlDependencyList ϕ; // This represents

that list is empty initially
7. ServiceList ϕ; //at ini-

tial ServiceList is empty
8. //This pattern is used to extract ADL Program

block by block
9. ArchitecturePattern

@"\b(architecture|service)\s+\w+\s+(is)\s+(abstract
ion\((\w+\s*\w+)?\))";

10. // In ADLProramPartion list different blocks
of ADL program is listed

11. ADLProgramPartition Split Π-ADL Program on
the basis of ArchitecturePattern;

12. ServiceListGetAllServices();//Calling of Get-
AllServices procedure which is defined at end of
section

Architecture Level Dependency Analysis Kumar and Ratneshwer

73

13. // Logic for Control Dependency
14. countcontrol0;//countcontrol has been used

as subscript of the controlDependencyList
15. count0// count has been used as subscript

for extracting services from Service
16. foreach(part∈ADLProgramPartition)
17. {
18. callingServiceServiceList[count]; //

each service is assigned one by one in callings-
ervice

19. // this is a pattern for extracting called
services by calling service and callPattern has
been used to extract called services from a block
of ADL Program

20. callPat-
tern@"(call|Call)\s+(?<calledname>(\w+))[\(](\w+)[
\)](\.)";

21. totalcalledService extract called services
from parts on the basis of callPattern;

22. if(totalcalledService.Count>0)
23. {
24. foreach(s ∈ totalcalledService)
25. {
26. calledServices.calledname;
27. ControlDependencyList[countcontrol]

callingService + " <-- "+ calledService;
28. countControl countControl+1;
29. }
30. }
31. count count+1;
32. }
33. returnControlDependencyList;
34. }//end of algorithm

6.4 ‘DATA DEPENDENCY’ EXTRACTION ALGORITHM

This algorithm is used to analyze the data dependency among services in a
SOA based system. This algorithm takes Π-ADL as an input and generates list
of data dependencies among services on the basis of data dependency pat-
terns defined in ‘call’ Pattern. As starting of the algorithm there is no element
in the DataDependencyList thus we initialize it empty (ϕ). This algorithm
mainly checks the service call and return. When a service calls to another
service, in that case invoking service may send some data to the invoked ser-
vice and invoked service may return the data to the invoking service.

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

74

Algorithm 4: Proposed Algorithm for Extraction of Data Dependency
1. Algorithm: ControlDependency()
2. Input: Π-ADL
3. Output: The output will list out the service and re-

lationship with called services
i.eControlDependencyList

4. // Starting of Algorithm
5. {
6. ControlDependencyList ϕ; // This represents

that list is empty initially
7. ServiceList ϕ; //at ini-

tial ServiceList is empty
8. //This pattern is used to extract ADL Program block

by block
9. ArchitecturePattern

@"\b(architecture|service)\s+\w+\s+(is)\s+(abstractio
n\((\w+\s*\w+)?\))";

10. // In ADLProramPartion list different blocks of
ADL program is listed

11. ADLProgramPartition Split Π-ADL Program on the
basis of ArchitecturePattern;

12. ServiceListGetAllServices();//Calling of Get-
AllServices procedure which is defined at end of sec-
tion

13. // Logic for Control Dependency
14. countcontrol0;//countcontrol has been used as sub-

script of the controlDependencyList
15. count0// count has been used as subscript for ex-

tracting services from Service
16. foreach(part∈ADLProgramPartition)
17. {
18. callingServiceServiceList[count]; // each

service is assigned one by one in callingservice
19. // this is a pattern for extracting called services

by calling service and callPattern has been used to
extract called services from a block of ADL Program

20. callPat-
tern@"(call|Call)\s+(?<calledname>(\w+))[\(](\w+)[\)
](\.)";

21. totalcalledService extract called services from
parts on the basis of callPattern;

22. if(totalcalledService.Count>0)
23. {
24. foreach(s ∈ totalcalledService)
25. {
26. calledServices.calledname;
27. ControlDependencyList[countcontrol]

callingService + " <-- "+ calledService;

Architecture Level Dependency Analysis Kumar and Ratneshwer

75

28. countControl countControl+1;
29. }
30. }
31. count count+1;
32. }
33. returnControlDependencyList;
34. }//end of algorithm
35. Output: The output will list out the service and

relationship with the services on the basis of mes-
sage passing i.eDataDependencyList

36. // Starting of Algorithm
37. {
38. DataDependencyListϕ; // This represents

that list is empty initially
39. ServiceListϕ; //at ini-

tial ServiceList is empty
40. //This pattern is used to part ADL Program block by

block
41. ArchitecturePattern

@"\b(architecture|service)\s+\w+\s+(is)\s+(abstractio
n\((\w+\s*\w+)?\))";

42. ADLProgramPartition Split Π-ADL Program on the
basis of ArchitecturePattern ;

43. //Calling of GetAllServices procedure which is
given in last of this section

44. ServiceListGetAllServices();
45. // Logic for Data Dependency
46. countdata 0;
47. count 0;
48. foreach(part ∈ ADLProgramPartition)
49. {
50. callingServiceServiceList[count]; // each

service is assigned one by one in callingservice
51. // this is a pattern for extracting called services

by calling service
52. callPat-

tern"(via)\s+(?<return>\w+)\s+(receive)\s+(call|Call
)\s+(?<calledname>(\w+))[\(](?<pname>\w+)[\)](\.)";

53. totalcalledServiceextract called services from
parts on the basis of callPattern;

54. if(totalcalledService.Count>0)

55. {
56. foreach(s ∈	 totalcalledService)
57. {
58. calledServices.calledname + “@ Parameter= ” +

s.pname + “ @Return Value =” + return ;
59. DataDependencyList[countdata] callingService +

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

76

" "+ calledService;
60. countdatacountdata+1; }

61. }
62. Count=count+1;
63. }
64. Return DataDependencyList;
65. } //end of algorithm control dependency

part∈	ADLProgramPartition, foreach loop continues until ADLProgramPartition
exists the item. ‘part’ variable belongs to the the ADLProgramPartition. Call-
ingService initially takes the service from the ServiceList, each time as it in-
creases the outer foreach loop. CallPattern mentioned in the algorithm
checks the pattern matching cases in the Π-ADL, which is shown and ex-
plained below.

callPat-

tern"(via)\s+(?<return>\w+)\s+(receive)\s+(call|Call)\s+(?<calledname
>(\w+))[\(] (?<pname>\w+)[\)](\.)";

‘via’ keyword comes before any other word when there is the case of service
call. After via keyword there has to be at least one or more blank spaces de-
noted by ‘\s+’ . Next, return variable holds the data value returned by the
called service after execution that service as last statement. ‘receive’ keyword
comes after some spaces and followed bysome spaces. After that, call key-
word is there and some spaces. And then, ‘calledname’ variable stores the
called service name of type any word of at least length one and can have any
character or numeric value. Finally, pname stores parameter name of any al-
phanumeric type of minimum one length.

We have taken a variable totalcallService which extracts the text from part on
the basis of callPattern. If only number of totalCallSeriveis greater than zero
then inner foreach loop executes. In inner foreach loop, variable ‘s’ is used to
extract each and every element from totalcalledService one by one order. The
called service is assigned by variable s with property callednamem, pname
and return defined in the calledPattern as name of called service, parameter
and return value respectively. Inner foreach loop continues until and unless
there exists an item in totalcallService. DataDependencyList which stores the
data dependency by reverse pointing from calling service to called service as
inner foreach loop exists. Finally, after reading all items from ADLProgramPar-
titon, DataDependencyListis returned.

Architecture Level Dependency Analysis Kumar and Ratneshwer

77

6.5 ‘SEQUENTIAL DEPENDENCY’ EXTRACTION ALGORITHM

This algorithm calls the ControlDependency algorithm for the list of control
dependency items. On the basis of control dependency items, we can observe
the sequence dependency if service A calls to service B, service B calls to
service C and so on. In that situation we have sequence dependency among
services because there is a sequence of calls among A, B and C.

The algorithm Sequence Dependency gets ControlDependencyList as input
and publishes SequenceDependencyList as output as mentioned in the algo-
rithm. Initially there is no item in SequenceDependencyList thus declared as
empty list specified by ϕ. Sequence pattern is as follows is used to extract the
call between one services to another service.

sequencepattern @"(?<parent>\w+)\s+ ()\s+(?<child>\w+)";

In the above mentioned pattern, variable parent is as calling service and child
is called service where child service points to the parent service that means
parent service is control dependent on child service thus there is a sequence
dependency from parent to child. Variable SequenceService takes the list of
ControlDependencyList on the basis of sequencepattern. Outer foreach loop
executes until there is an item in SequenceService. At first, sequence varia-
ble is declared as empty ,’parent’ is assigned as parent property of item and
‘child’ is assigned as child property of item that belongs to SequenceService.
Afterward, sequence is assigned by control relationship where child is pointing
to parent. Internal Loop executes when an item1 reads each item of Se-
quenceService.

Algorithm 5: Proposed Algorithm of Sequential Dependency Extraction
1. Algorithm: Sequence Dependency
2. Input: ControlDepencyList
3. Output :SequenceDependencyList
4. // Starting of Algorithm
5. {
6. SequenceDependencyList ϕ; // initially Se-

quenceList is empty
7. //Calling of the procedure ControlDependencyi.e all

control dependency relationships are assigned to
ControlDependencyList

8. ControlDependencyListControlDependency();
9. // Pattern for sequence on the basis of ControlDe-

pendencyList
10. sequencepat-

tern@"(?<parent>\w+)\s+()\s+(?<child>\w+)";
11. //Logic for Sequence Dependency
12. SequenceServicegetMatches on the basis of

sequencepattern from ControlDependencyList
13. j=0;
14. foreach(item ∈SequenceService)

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

78

15. {
16. sequence ϕ;
17. parentitem.parent;
18. childitem.child;
19. sequence parent + “ “ +child;
20. foreach(item1∈ SequenceService)
21. {
22. if(item1!=item)
23. {
24. gchilditem1.child;
25. gparentparent;
26. parent item1.parent;
27. if(child = parent)
28. {
29. sequence sequence+ “  “ +gchild;
30. }
31. childgchild;
32. }
33. }
34. SequenceDependencyList[j]  sequence;
35. j j+1;
36. }
37. returnSequenceDependencyList;
38. } // end of the algorithm

If item1 is not equal to item then gchild is assigned by child property of item1.
gparent is assigned by parent and parent reassigned by parent property of
item1. If child of previous item is equal to the parent of the current item.then
there is sequence dependency between previous sequence dependency and
the gchild where gchild points to previous. Then, child is assigned by gchild.
As inner loop gets out then SequenceDependencyList is assigned by se-
quecnce. Just before exiting the outer loop, all sequence dependencies are
assigned to SequenceDependencyList. Finally, SequenceDependencyList is
returned as output to the invoking service.

6.6 ALL SERVICES EXTRACTION ALGORITHM

 This algorithm extracts all the services exists from Π- ADL document of
‘Online BookStore’ system.

Algorithm 6 : Proposed Algorithm for All Services extraction

1. Algorithm :GetAllServices()
2. Input: Π-ADL Program
3. Output: AllServicesList

Architecture Level Dependency Analysis Kumar and Ratneshwer

79

4. //Start of the Algorithm
5. {
6. allservices ϕ; // allservices list has

no element at initial
7. // Pattern for service extraction
8. // ArchServPattern has been used to extract the

service without logic and service name
9. ArchServPattern

@"\b(architecture|service)\s*(?<name>\w+)\s*(is)\s*
(abstraction\((\s*\w+\s+\w*)?\))";

10. // archServCollection list stores the ser-
vices from Π-ADL program

11. archServCollectiongetMatches of Π-ADL on
the basis of ArchServPattern;

12. //logic for service extraction
13. foreach(service є archServCollection)
14. {
15. allservices.Add service.name; // service

name is added to all services
16. }
17. return allservices;

18. } //End of algorithm GetAllServices

7-DESIGN DESCRIPTION AND INTERFACES OF DEVELOPED
TOOL ‘DA-SOA’

An attempt has been made to automate the above discussed approaches. A
tool named ‘DA-SOA(Dependency Analyzer for SOA based System)’ has
been developed based on the above proposed algorithms. The proposed tool
takes Π-ADL (pi –Architecture Description Language) of a SOA based sys-
tem as input and gives the different types of dependence relationships, in the
SOA based System, as output.

In general, the objective of the developed tool is to facilitate dependency ex-
traction, at architectural level, of a SOA based system. The creation of this
tool is guided by the following questions:

 Who will be the probable user of this dependency extraction tool?
 Who will be the beneficiaries of this tool?
 What are the major functionalities provided by this tool?

In response to the first question, a software architect may use this tool ‘DA-
SOA’ to identify dependencies among services. An architect is responsible

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

80

for software architecture design. Software tester may use this tool for debug-
ging at software testing phase. They can get information of all service rela-
tionships that will help in integration testing and system testing. A software
maintainer may use this tool for maintenance purpose at later stage.

For the second question, service provider and service consumer both will be
benefitted from this tool. Since service and client applications are evolved in-
dependently. So both service and client applications benefit from this tool for
understanding the system chaotic situations.. For example, project manager
of the proposed system uses this tool and becomes aware of the risk in the
system. The main reason for failure of SOA based system is unawareness
about dependency existence among services. When developer is aware about
dependencies in the SOA based system, then risk can be handled easily dur-
ing development or implementation of the system. Identification of all relation-
ships among services will help to add/delete/modify any service in the SOA
based system. The possible effect of modification of one service over the oth-
er services can also be analyzed. This tool can also be used for configuration
management phase.

This tool will show the different types of dependency in text form, matrix form,
and graphical form. This tool has used Π-ADL documentation of a SOA
based system as input and through different logic(algorithm mentioned in
previous section) generates different types of dependencies as MainProgram
to Service Dependency, Composite Dependency, Control Dependency, Data
Dependency, and Sequence Dependency. Thus, this tool supports a number
of functionality to improve the quality of the proposed SOA based system.

7.1 DESIGN OF THE PROPOSED TOOL ‘DA-SOA’

In this subsection, design description of the developed tool ‘DA-SOA’ has
been explained. UML diagrams have been used to show the design of this
tool pictorially. We have used ‘activity diagram’, ‘component diagram’ and ‘de-
ployment diagram’ to show the design of the tool with three different aspects.
The overall system design includes different modules to extract different types
of dependency from architecture description written in Π-ADL.

7.1.1 Activity Diagram

Activity diagram is an important diagram in UML to describe dynamic aspect
of the system. It is basically a flow chart to represent a flow from one activity
to another activity. Figure 6 shows the various activities of the Dependency
Analyzer (DA-SOA) tool for SOA based system. First step is to extract archi-
tecture description from an input file then performed pattern matching activity
on the basis of architecture pattern, compose pattern and service pattern ac-
tivity. After the activity of pattern matching, dependency extraction program
activity is done. Activities of different types of dependency extraction are done
after the activity general dependency extraction. Finally every dependency is
displayed in text, matrix and graph form.

Architecture Level Dependency Analysis Kumar and Ratneshwer

81

Figure 6. Activity Diagram of ‘DA-SOA’

7.1.2 Component Diagram

Component diagrams are used to model physical aspect of a system. This
diagram has been used to visualize the organization and relationship among
components in a system. The figure 7 depicts component diagram of tool
‘DA-SOA’. This diagram shows the dependency among different components.
We have taken different modules for tool as in depicted in the following figure.

Figure 7. Deployment Diagram of ‘DA- SOA’

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

82

7.1.3 Deployment Diagram

Deployment diagrams are used to describe the static deployment view of a
system. This diagram consists of nodes and their relationship. This diagram is
similar to component diagram as depicted in the following figure. The diagram
in figure 8 shows the deployment component diagram for development of DA-
SOAtool.

Figure 8. Deployment Diagram of ‘DA-SOA’

7.2 DESCRIPTION OF THE TOOL DA-SOA

The tool ‘DA-SOA’ has been developed in C# using .NET framework. The tool
‘DA-SOA’ reads the file of architecture description document written in Π-ADL
of a SOA based system (which is given in appendices). The tool generates
different dependencies, at architecture level, in the system. This tool has
‘main interface’ by which a person can visualize different types of dependen-
cies in text view, matrix view and graph view. Snapshot of main interface of
this tool has been shown in the figure 9. By this interface, to view dependency

Architecture Level Dependency Analysis Kumar and Ratneshwer

83

in any form, we use the menu bar item and get the result in different view. We
have given the detail of different dependencies and snapshot generated by
this tool in this section.

Figure 9. Main Interface of the tool DA-SOA

Generated dependencies by this tool are Main Program to Service Depend-
ency, Composite Dependency, Control Dependency, Data Dependency and
Sequence Dependency in different format. In the graph view, blue rectangle
has been taken as atomic service and green rectangle as composite ser-
vice. Black arrow represents dependency; red arrow shows the parameter
passing and green arrow show the value return by the service. Violet row
show control passing. We have taken composite dependency as example
for the purpose of demonstration of tool.

Screen snapshots of different view of Composite Dependency using ‘DA-
SOA’ are demonstrated below.

Composite Dependency Identification through ‘DA-SOA’

Composite service is created from individual services to fulfill business re-
quirements. Here composite service depends on individual service. Some
changes or removal of individual service can badly affect to composite ser-
vice. So analysis of composite dependency is inevitable for avoiding risk of
catastrophic situation of SOA based system.

(a) Text View

Show TreeView Button displays composite services and other services in

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

84

TreeView Control in right side. In the TreeView control relationship between
composite service and individual services have been depicted on different
level. In the figure 10 composite service Search is composed of Search-
ByBookName, SearchByISBN and SearchByAuthorName.

Figure10. Composite Dependency in Text View

(b) Matrix View

m×m matrix with value 0 and 1 where 0 means no dependency and 1 rep-
resents dependency from service in row to service in column shown in fig-
ure 11, where m denotes the number of services . All the diagonal value is 0
means there is no self-dependency. Row service is the composite form of
all the 1’s column service. For example, OnLineBookStore is the composite
service and it has LoginService, alert, BookInsert, ShoppingCart etc. are as
membership services. GridView Control has been used to show composite
dependency of services in matrix view.

Figure 11. Composite Service Dependency in Matrix View

Architecture Level Dependency Analysis Kumar and Ratneshwer

85

(c) Graph View

If arrow goes from service A to service B, C, D etc. then service A is com-
posite service consisting of services B, C, D etc. Mathematically A {B, C,
D...} means A is the composite service consisting of services B, C, D…
Figure 12 presents graph view of composite dependency of the system
‘OnLineBookStore’. As given below, OnLineBookStore and Search are
composite services represented by green rectangle box where other ser-
vices by blue rectangle box. Service Search points to services SearchBy-
ISBN, SearchByBookName and SearchByAuthorName that means Search
service is a composite service.

Figure12. Graph View of Composite Dependency

8- CONCLUSION

In the present work, we concentrate on automated dependency identification
from an architecture description of a SOA based system. Dependency identifi-
cation and analysis is relevant research area in SOA based systems. We pro-
posed various algorithms and also describe how we implemented our ap-
proach. This tool 'DA-SOA' can efficiently be used for software understanda-
bility. Dependency identification in a SOA based system is however a compli-
cated task. Although we have tested this tool for a prototype SOA based sys-
tem, we are planning to apply it for some real time application and acquire
feedback for the further improvement of the tool.

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

86

REFERENCES

[1] J. A. Stafford, A. L. WOLF. (2001). Architecture-Level Dependence Anal-
ysis for Software Systems, International Journal of Software Engineer-
ing and Knowledge Engineering, Volume: 11, Number: 04, August 2001,
pp.1-18.

[2] J. Zhao. (1997). Using Dependence Analysis to Support Software Archi-
tecture Understanding (1997), New Technologies on Computer Soft-
ware, 1997, pp. 135-142.

[3] S. Wang. (2010).Dependency Based Impact Analysis Framework for
Service-Oriented System Evolution,PhD Thesis, University of Western
Ontario, Ont., Canada,2010.

[4] J.A. Stafford, A.L. Wolf and M. Caporuscio. (2003). The Application of
Dependence Analysis to Software Architecture Descriptions. Lecture
Notes in Computer Science, Vol. 2804 Bernardo, Marco; Inverardi, Pao-
la (Eds.) 2003, pp. 52-62.

[5] M. Rosa and A. O. Sampaio. (2013). SOA Governance through Enter-
prise Architecture, Web Article. Access
at:http://www.oracle.com/technetwork/articles/soa/rosa-sampaio-soa-
gov-2080776.html.

[6] D. Garlan, R. Monroe, and D. Wile. (1997). ACME: An Architecture De-
scription Interchange Language. In Proceedings of CASCON’97, Toron-
to, Ontario, November 1997, pp. 169-183.

[7] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W.
Mann. (1995). Specification and Analysis of System Architecture Using
Rapide.” IEEE Transactions on Software Engineering, vol. 1, no. 4, pp.
336-355, April 1995.

[8] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G.
Zelesnik. (1995). Abstractions for Software Architecture and Tools to
Support Them. IEEE Transactions on Software Engineering, vol. 21, no.
4, pp. 314-335, April 1995.

[9] G. Abowd, R. Allen, and D. Garlan.(1993). Using Style to Understand
Descriptions of Software Architecture. In Proceedings of the First ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pp.
9-20, Los Angeles, CA, December 1993.

[10] F. Oquendo. (2004). Π-ADL- An Architecture Description Language based
on the Higher Order Typed π-Calculus for Specifying Dynamic and Mo-
bile Software Architectures. ACM Software Engineering Notes, Vol.28,
No. 8, USA, May 2004.

[11] R. Tolksdorf (2003) A Dependency Markup language for web services.
In: Web, Web-Services, and Database Systems, Springer Berlin Hei-
delberg. pp. 129-140.

[12] C. Ensel, A. Keller (2001) Managing application service dependencies

Architecture Level Dependency Analysis Kumar and Ratneshwer

87

with XML and the resource description framework. In: Proceedings of
IEEE/IFIP International Symposium on Integrated Network Manage-
ment. doi: 10.1109/INM.2001.918072 pp. 661-674.

[13] S. Basu, F. Casati, F. Daniel (2008). Toward web service dependency
discovery for SOA management.Proceedings of IEEE International
Conference on Services Computing. , doi: 10.1109/SCC.2008.45, Vol 2
pp.422-429.

[14] T. Espinha, A. Zaidman and H. Gross. (2012). Understanding the
Runtime Topology of SOA Systems, 19th Working Conference on Re-
verse Engineering (WCRE), Kingston, ON, Canada, October 15-18,
2012.pp. 187-196.

[15] SOA Dependency Analyzer 1.0. Available at
http://code.google.com/p/bpel-esb-dependency-analyzer/. Accessed on
24th May 2013.

[16] Omer AM, Schill A (2009) Dependency Based Automatic Service Com-
position Using Directed Graph. In: Proceedings of Fifth International
Conference on Next Generation Web Services Practices, Prague, pp
76-81.

[17] E. D. Trigos. (2009). service dependency analysis based on process
models and service level agreements. Master thesis, Dresden Universi-
ty of Technology.

[18] J. Brondum, L. Zhu. (2012). Visualising architectural dependencies.
2012 Third International Workshop on Managing Technical Debt (MTD),
5-5 June 2012, Zurich, pp. 7-14.

[19] J. Li, R. Jeffery, K.H. Fung, L. Zhu, Q. Wang, H. Zhang, X. Xu, (2012). A
business processdriven approach for requirements dependency analy-
sis, in: Proceedings of 10th International Conference on Business Pro-
cess Management (BPM’12), LNCS, vol. 7481, Springer, Tallinn, Esto-
nia, 2012, pp. 200–215.

[20] M. Owen, J. Andraj, (2003). BPMN and business process management,
http://www.bpmn.org/Documents/6AD5D16960.BPMNandBPM.pdf.

[21] D. Garlan, R. Allen, and J. Ockerbloom. (1994). Exploiting Style in Ar-
chitectural Design Environments. In Proceedings of SIGSOFT’94:
Foundations of Software Engineering, pages 175– 188, New Orleans,
Louisiana, USA, December 1994.

[22] A. Terry, R. London, G. Papanagopoulos, and M. Devito. (1995). The
ARDEC/Teknowledge Architecture Description Language (ArTek), Ver-
sion 4.0. Technical Report, Teknowledge Federal Systems, Inc. and
U.S. Army Armament Research, Development, andEngineering Center,
July 1995.

[23] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. (1995). Specifying
Distributed Software Architectures. In Proceedings of the Fifth Europe-

Int. J. of Software Engineering, IJSE Vol.9 No.1 January 2016

88

an Software Engineering Conference (ESEC’95), Barcelona, Septem-
ber 1995.

[24] P. Binns, M. Engelhart, M. Jackson, and S. Vestal. (1996). Domain-
Specific Software Architectures for Guidance, Navigation, and Control.
International Journal of Software Engineering and Knowledge Engineer-
ing, vol. 6, no. 2, 1996.

[25] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W.
Mann. (1995). Specification and Analysis of System Architecture Using
Rapide. IEEE Transactions on Software Engineering, vol. 1, no. 4, pag-
es 336-355, April 1995.

[26] M. Greenwood et al. (2003). Process Support for Evolving Ac-tive Ar-
chitectures, Proceedings of the 9th European Workshop on Software
Process Technology, LNCS 2786, Springer Verlag, Hel-sinki, Septem-
ber 2003.

[27] F. Oquendo. (2008). pi-ADL for WS-Composition: A Service-Oriented
Architecture Description Language for the Formal Development of Dy-
namic Web Service Compositions. In: SBCARS, pp. 52–66 (2008).

[28] M. L.Sanz, Z. Qayyum, C. E. Cuesta, E. Marcos. (2008). Representing
Service Oriented Architecture Models Using Π-ADL, Proceedings of the
2nd European conference on Software Architecture,Springer-Verlag
Berlin, Heidelberg,pp. 273-280.

Architecture Level Dependency Analysis Kumar and Ratneshwer

89

