

A Pervasive Computing Business
Reference Architecture: The Basic

Requirements Model

Osama M. Khaled, Hoda M. Hosny, and Mohamed Shalan

Department of Computer Science and Engineering. The American University in Cairo
(Egypt)

Email: {okhaled, hhosny, mshalan}@aucegypt.edu

ABSTRACT

Pervasive computing is considered one of the most complex computing
domains. Our research work attempts to solve some of the business
challenges associated with pervasive computing. In this paper, we present a
novel business reference architecture which addresses the basic business
requirements to build a pervasive computing system by exploring eleven basic
quality features and defining their requirements model. It has a detailed
trade-off analysis for the selected quality features which guides the user while
making decisions on real projects. We found that building a basic business
requirements model is a very useful step towards building a business
reference architecture, which will lead to a more practical technical reference
architecture.

Keywords: Business process re-engineering, Context-aware services, Pervasive
computing, Software architecture, Ubiquitous computing

1- INTRODUCTION

Automation aims to reduce efforts that people exert to achieve tasks. It
reduces efforts and paper work, speeds up activities to connect remote areas,
to transfer information, and to recover from human errors. It is designed to
make things easier in our lives and to make them more comfortable. In the
pervasive computing world, automation should do the same thing. However, a
pervasive computing system is different from normal computer systems as
human beings and devices tend to make more movements and activities. It is
a system of, usually, small devices distributed in different locations.

Weiser’s [1] vision is almost there. Computers are now everywhere, they are
small, and contain unprecedented processing capabilities, e.g. Edison by Intel
[2] and ARTIK microprocessor by Samsung [3]. They can be used to
implement Internet of Things (IoT) applications. On the other hand, supportive
technology, as will be shown in this paragraph, has advanced as well. The
IPV6 range can acquire billions of smart devices which Gartner expects to
reach 5.4 billion by 2020 [4]. A 4G speed network with higher speeds is now
expanding in the market and researchers took real steps towards

A Pervasive Computing Business Reference Architecture Khaled, Hosny, and Shalan

17

implementing 5G networks with higher capacity by 2020 [5]. Researchers are
working on the 5G Also, researchers are working on new versions of the WiFi
and Bluetooth protocols with better IoT capabilities [6]. Renewable energy,
e.g. solar power harvesting technology, is now smaller in size and can sustain
low-energy consumption devices, like sensors, for longer times. Super-
capacitors can also store 10 to 100 times of what electrolytic capacitors can
store [7].

The main challenge for a complete pervasive system is the complexity of its
architecture with many inherited design challenges due to the features that the
system must have, like context sensitivity and adaptive behavior [8]. Some of
these features may conflict with each other and subsequently generate more
design challenges. For example, it could be required to capture knowledge
about users via sensors and at the same time protect their privacy. It could be
required to allow devices from any manufacturer to join the system with full
compatibility and no errors. Such conflicts increase the complexity of the
system and introduce business problems that must be resolved early enough
before implementing the system’s technical architecture.

Although researchers exerted great efforts to generate reference architectures
for pervasive systems, only a few of them addressed the business problems,
or challenges, that are supposed to guide the technical model. Building a
technical model for an undefined business problem makes the reference
model not very practical in all contexts [9]. Our research aims to define a
generic business reference architecture layer in order to build a practical and
solid technical reference architecture. By business architecture we mean the
business concepts, definitions, requirements and processes that form the
understanding of a specific domain.

The rest of the paper is organized as follows: Section II cites some of the
related research work, Section III explains our research approach, section IV
gives details about the essential requirements for basic quality features in
pervasive systems, and section V presents a trade-off analysis for the quality
features. Section VI concludes the paper.

2- RELATED WORK

As mentioned above, there are many technical reference architecture models
that are not based on clear business models. Fortunately, we found some of
the reference architectures that based their technical models on business
requirements or at least demonstrated their work using business scenarios.
We reviewed these models critically in order to establish the basic
requirements for our business reference model.

Machado et al [10] present a reference architecture for ubiquitous computing
which they called RA-Ubi. The authors built their reference architecture (RA)
by following a process in which they i) identify information sources ii) elicit
requirements iii) design the RA, and iv) evaluate the reference architecture.

Although the authors claimed that their technical model was based on clear

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

18

requirements, they did not show how the ubiquitous computing requirements
guided their design decisions nor how the technical architecture can fulfill
these requirements. The authors also did not give enough guidance on how
to use their RA, and they gave only a description of the high-level
components.

Addo et al. [11] introduced a reference architecture to improve security and
privacy in the IoT applications. The authors tried to clarify their reference
architecture by stating some business scenarios where such quality features
should be considered, namely: a) a home automation monitoring service b) an
Online Social Networking application, and c) a movie recommendation
service.

The authors also identified some of the security, privacy and trust
requirements that they considered in their RA. These requirements may be
summarized as follows:

1. User identification and validation.
2. Tamper resistance of the physical and logical devices.
3. Content Security.
4. Data privacy.
5. Data communication and storage security.
6. Privacy in ubiquitous devices.

The IoT-A project [12] introduced a reference architecture for IoT systems as
well. Its authors stated clearly a list of requirements that they used to support
and validate their technical model. They gave details about each piece of
requirement to understand its scope of implementation. They did not however
provide priorities for the requirements since they considered this practice
inappropriate for a reference architecture.

Al Ali et al. [13] introduced a reference model based on pervasive computing
and cloud computing. They modeled the system architecture as a chain of
nodes that include low-power nodes (e.g. sensors), resource-poor nodes (e.g.
mobile phones), resource-rich nodes (e.g. severs), and cloud nodes. The low-
power node will send data directly to the resource-poor node. The resource-
poor node will aggregate data and send it to the resource-rich node. The
resource-rich node makes online processing and delegates long-term tasks to
the cloud nodes.

Al Ali et al. [13] focused their discussion on the hardware and network
perspectives but gave a shallow discussion about the business requirements.
They also did not discuss the impact of security rules on the performance of
online data processing.

Our requirements model has gone a few steps further from those earlier
models. We analyzed the relationships between the requirements as will be
explained in the next section. We also carried out a deep statistical analysis
of the relationships between the requirements, and gave a broader view that

A Pervasive Computing Business Reference Architecture Khaled, Hosny, and Shalan

19

can work for multiple business domains.

3- OUR RESEARCH APPROACH

Pervasive
Computing

System Business
Architecture

Psychology
Sociology

Process Re-
engineering

Guided By

Feature
1 1..*

Quality
Trade-off
Analysis

Driven from

Requirement

1

1..*

Driven from

Importance
Evaluation

Survey

Assess importance

Compare with
complexity scores

Use Case
1..* 0..*

State
machine

Interaction

0..*

1

1

Figure 1 Pervasive Computing Analysis Approach

In order to define a useful business reference architecture for pervasive
computing, we analyzed the system from more than one aspect (Fig. 1). We
defined the business architecture as a pool of quality features that are driven
by some business requirements. We refined our understanding about the
requirements by studying possible use cases and state machines. We elicited
the list of requirements from the literature and from domain experts by
employing business analysis techniques (e.g. workshops and surveys).

We made a trade-off analysis for the quality features based on the
relationships among requirements to prioritize features and to understand
their pertaining complexity. The business reference architecture is guided
through the study of sociology (activity theory), psychology (Perception), and
process re-engineering concepts. The previous theories and concepts are
chosen because they are descriptive frameworks for our lives with all its
complex interactions. Moreover, the readers will note that Weiser’s vision
about pervasive systems can be also explained through them. We finally
conducted a survey to assess the importance of the requirements. We
aggregated the requirements’ importance scores by the quality features and
compared the results with the complexity score that were generated from the
trade-off analysis study.

3-1 ACTIVITY THEORY

The activity theory is one of the descriptive theories that explain human lives.
The theory shows that people move around to achieve specific goals
(outcomes) within processes. The goal is a desired objective that someone

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

20

(subject) wants to achieve. The process is an organized set of activities that
should be completed in order to achieve the goal (outcome). People use
(tools), physical or mental tools, recognized things or concepts from the world
(objects), and manipulate and abide by (rules) to perform the tasks [14] [15].
Moreover, responsibilities are distributed among the people (community) who
share the activity according to the (Division of labor) rules (Fig. 2).

An individual who wants to achieve a specific goal for the first time will usually
concentrate on the process activities in order to reach the required goal. In
other words, his/her mind will be highly alerted not to make any mistake that
may spoil the required goal and consequently result in undesired outcomes.
For a person who gets used to performing the activities of the process, he/she
finds no problem in performing the activities with minimal or no mistakes and
he/she usually achieves the goal quite easily [16].

Although the activity theory describes only an activity for an individual, not an
activity fulfilled by a group of people [14], its simplicity and clarity are rather
appealing to the scope of research since we want only a descriptive model for
the environment of the pervasive system. Moreover, it is successful in
describing Human-Computer Interaction (HCI) systems [14], which is a major
characteristic for a pervasive system where users interact with the system all
the time.

Figure 2 Activity Theory Perspective [12]

3-2 PERCEPTION

Perception represents a natural process that allows human beings to sense
the environment and detect its changes through stimuli and interpret them into

Tools

Subject Object

Rules Community Division of
labour

Outcome

A Pervasive Computing Business Reference Architecture Khaled, Hosny, and Shalan

21

useful meanings. We use these meanings to make the proper recognition and
devise a suitable response [17] [18]. For example, the environment contains
contextual stimuli (e.g. a person whom one knows) that send signals to our
sensory system (e.g. eyes or ears) where we use our experience and
knowledge to interpret it into a useful meaning (e.g. your friend), recognize it
(e.g. your friend Kathrin) and take the proper response (e.g. shake hands).

The process adds to our accumulated knowledge and experience which we
use again through our lives within several other perception activities. Our
interpretation system mainly depends on detecting specific features about the
stimuli [19]. The neural system then reviews these features with the stored
knowledge and makes the proper match to recognize the stimuli. There are
sets of actions or responses that are also reviewed based on the knowledge
about the stimuli, and one or more responses are taken accordingly.

It is very interesting to note that the perception process describes the main
activities in pervasive computing in its simple format (context awareness and
adaptability). Pervasive computing is similar to the perception process in the
sense that it should be invisible and transparent to the users. The perception
process is also natural and invisible to the people.

3-3 PROCESS RE-ENGINEERING

Process engineering describes a specific process as a set of activities in order
to achieve a specific goal. The process may have different decision
conditions, inputs, and outputs. The decision conditions decide on the path
that the process will go through which may end up not achieving the main goal
of the process. At some point in time, people may find out that the process is
no longer efficient and that it needs to be revisited. So, they initiate a
reengineering project that aims to revisit the process and recommend
solutions.

In process re-engineering, there are 3 major objectives [20]:
1. Maximize the value added tasks that the customer is willing to pay for.
2. Minimize the non-value added tasks which are essential for the

process but the customer will not be willing to pay for.
3. Eliminate tasks that are considered a clear waste in the process.

3-4 REQUIREMENTS MODELING APPROACH

A pervasive computing system may automate tasks that people do in their
lives. Accordingly, any business requirement that derives functional or
architectural requirements should be considered from a process-engineering
point of view.

We defined some stereotype notations to understand the relationships among
the business requirements inspired from the 3 major objectives of process re-
engineering:

1. Minimize: it is a relationship that shows that one requirement works

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

22

on minimizing a non-desired value from another piece of requirement.
2. Maximize: it is a relationship that shows that one requirement works

on maximizing a desired value from another piece of requirement.
3. Conflict: it shows that two requirements could have conflicting

values. If this happens, then one of them must supersede the other in
order to resolve this conflict. The relationship could be one-directional
or bi-directional.

4- QUALITY FEATURES

A reference architecture in pervasive computing should address specific
design and architectural challenges that are very common in the domain. We
selected the features that pervasive computing applications usually endorse
[21]. The following list represents the features that we chose to study in our
research and adopt in our model:

1. Adaptive Behavior (AB): The system must be capable of
dynamically responding to changes in the environment as needed
[21].

2. Context Sensitivity (CS): The system must have the ability to sense
and retrieve data from its environment [21].

3. Experience Capture (EC): The system must have the ability to
capture and record experiences for later use [21].

4. Fault Tolerance (FT): The system must be able to detect errors and
take the appropriate recovery actions [21].

5. Heterogeneity of Devices (HD): The system must be able to use
different device technologies seamlessly [21].

6. Invisibility (IN): The system must integrate computing resources to
the degree that the user has minimum awareness of them [21].

7. Privacy and Trust (PT): The system must ensure that personal
operations confidentiality is protected and accessed only by trusted
entities [21].

8. Quality of Service (QoS): The system must set expectations for its
services by setting constraints on the provided services. For
example, a system’s response may be considered invalid if it is
received after a certain period of time [21].

9. Safety (SY): The system must ensure highest performance of its
hardware and provide immunity for its users and interacting devices
from harm and damage.

10. Security (ST): is concerned with protecting data from being leaked to
unauthorized individuals, protecting data from corruption and
alternation, and ensuring accessibility to data whenever requested.

11. Service Omnipresence (SO): The system gives its users the feeling

A Pervasive Computing Business Reference Architecture Khaled, Hosny, and Shalan

23

that they carry their computer services wherever they move [21].

The above listed quality features were selected because they represent the
basic business and functional requirements for a successful pervasive
computing system. They are domain independent, which makes them
applicable in any business domain. We chose to cover some classical
features like Security, Privacy and Trust, and Fault Tolerance, in order to
understand the relevant priority of the pervasive features like adaptable
behavior and context sensitivity. None of these features contain architecture
requirements. Most of these features were introduced in [21] as the features
covered by most of the surveyed systems. We deliberately ignored other
features from the business architecture model mentioned by the same authors
[21]; namely spontaneous interoperability, service discovery, function
composition, openness, scalability, and concurrency since they are more of
architectural requirements.

From the perspective of the activity theory, it means that
1. The pervasive system will optimize the usage of tools and signs as

will be detailed in the Quality of Service section.

2. The rules will be changed to optimize the process as will be shown in
the Adaptive behavior and Context sensitivity sections

3. Responsibilities could be redistributed in the division of labor. The
coming sections will show that there are different categories of users
with different activities.

4. New members could be introduced to the community to fill in a gap in
the process, or removed from the community to eliminate a waste.
Heterogeneity of Devices and Service Omnipresence describe some
rules that govern the mobility of the users.

The following sections give detailed information about the requirements that
derive the quality features. We started the elicitation process by the main
categories, which are the quality features, then studied the requirements that
make them essential. The requirements are elicited from the literature and
derived from our knowledge. They were reviewed in a focus group with
experts who added their views as well.

4-1 ADAPTIVE BEHAVIOR

The pervasive system must react dynamically to the changes of its context. In
other words, it should adapt itself in a logical way based on specific decision
rules. For example, if the pervasive system discussed in the Context-
Awareness feature detected that there’s been an accident for a specific bus,
then it will take a decision that it needs to mobilize a rescue team. The
pervasive system in the bus may in this case use its actuators, which are
physical or virtual tools that can respond/change the context, to send an SMS
to an emergency rescue team, switch on alarming lights, and activate a
protection shield for the fuel tank. An adaptable pervasive system may cause
further changes to the context and it may subsequently need to adapt to these
changes causing further implications.

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

24

A generalized concept of the adaptive behavior may be applied on autonomic
systems as well where the system adapts itself to system changes in a way
that guarantees self-management to its functions and hide intrinsic complexity
from users [22].

In summary, a system with an adaptable behavior should fulfill the
requirements shown in Table 1.

Table 1 Adaptable behavior Feature Requirements

ID1 Name Note

1 Evaluate/Improv
e Adaptive
actions

The system must continuously review the adaptive actions
and improve them to ensure that they satisfy the majority of
the users.

2 Has smart
decision rules

Such decisions are dependent on the interpretations as
sensed from the environment. The decision rules must be
taken smartly in favor of a high priority goal maintained by
the system.

3 Notify users with
changes

The user must be aware of the changes that the system
made through its adaptive actions.

4 Possess
actuation
capabilities

These are the actuators that the system uses to respond to
the changes of the environment. These actuators can be
virtual or physical.

4.2 CONTEXT SENSITIVITY

Context sensitivity, or context awareness, is a collection of one or more
variables used to indicate specific changes in the physical or virtual world.
Awareness means that the system has the ability to detect a context and
interpret it to a specific decision. For example, a school may have context for
buses which contains location, time, and emergency alarm. These three
parameters determine the context of the school. Each of these parameters
takes specific values:

 Location: Far from school, nearby the school, in garage.

 Time: morning, noon, after noon, night.

 Bus Status: normal, accident, disaster.

There are 36 possible combinations of these variables which produce 36
contexts. One or more contexts may have the same interpretation. So, a
context C1= (Garage, night, accident) can be interpreted as a bus has a
problem but it is not severe since it is in garage and at night. Another context
that may contain C2= (nearby the school, morning, disaster) can be
interpreted as an emergency situation that requires immediate reaction to
save lives.

The Context Sensitivity requirements are summarized in Table 2.

1 The ID is used in the Appendix to show relationships among the requirements

A Pervasive Computing Business Reference Architecture Khaled, Hosny, and Shalan

25

Table 2 Context Sensitivity Feature Requirements

ID Name Note

5 Equip system with

sensors

The sensors are critical for the system in order to

collect as much data as possible for analysis [23].

6 Locate interacting

objects

At any point in time, the system should locate the

objects (smart or dummy). These objects could be

interacting with the system, or with a part of it.

7 Provide analytical

capability

The system is able to analyze the data collected by the

sensors, generate useful information and correct errors

if possible and if needed [23].

8 Provide interpretation

rules

The system should be able to interpret information

using predefined interpretation rules.

9 Record object lifetime The system must register the lifetime trip of the objects

that are part of the system. Statistical records should

be available whenever needed.

4-3 EXPERIENCE CAPTURE

According to Spinola and Travassos [21], experience capture is concerned
with finding common patterns of the user’s behavior or activities and capturing
them for later use. For example, in a smart home architecture, a user may
have a repeated pattern to enter a room on a specific time, switch on lights,
and then switch on the TV. The system can simplify these activities and
automate these actions later on. Such a feature needs to be regulated by
system policy and clear guidelines.

Moreover, the system should be able to capture knowledge about system
users and use it as input for improving pattern capturing [12]. By correlating
information and knowledge about users, the system will be able to forecast
future user behaviors. If the system is designed for a specific goal that will be
used by a specific group of people, then the habits and behaviors of those
people could be studied, analyzed and fed into the system, similar to what is
practiced in ethnography [24].

The Experience Capture Requirements are summarized in Table 3.

Table 3 Experience Capture Feature Requirements

ID Name Note

10 Capture Knowledge
about users

Use the personal knowledge smartly to convey to the
user that the system is there and recognizes his/her
work.

11 Correlate information
and knowledge

Correlate information and knowledge to forecast
events and anticipate user or object behavior [12].

12 Capture/change
behavioral patterns

The system should be able to capture/modify
pattern(s) that users or objects repeat when they
interact with the system [21].

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

26

4-4 FAULT TOLERANCE

Faults are more likely expected in a pervasive computing system due to its
complex nature which includes multiple devices with high levels of
communication among several software components. There are other
reasons in pervasive systems that can cause faults. For example, a smart
device may be processing something but it moves unexpectedly which causes
its process to fail. The device battery may run out of charge and immediately
goes out of service [25].

A fault is a problem that needs to be resolved and the decision of resolution
differs with each case. First let’s classify the faults as Severe, high, medium,
and low based on their consequences:

1. Severe: This category includes fatal errors that may result in
complete outage of the system, severe financial loss, or total
corruption of data and there are no instant resolutions of the problem.

2. High: This category of problems does not suffer from complete
outage of the system, but may have complete outage in some
functions, noticeable financial problems, or impacts a large number of
users. There are no instant resolutions for the problem.

3. Medium: Such a category has a moderate failure in terms of functions
and impacted users and has no financial loss. There could be
alternative approaches for the system to complete the required
service.

4. Low: this category usually includes cosmetic, textual, and partial
issues with specific functions. They do not impact the validity of data
nor hinder the completion of the user’s full scenario. But resolving
them can enhance the user’s experience.

In the above classification we used fault, error, and failure terms
interchangeably. In the literature [26] there is a clear distinction between
these terms:

1. Human error or mistake: a human behavior that results in system
faults.

2. System Fault: a characteristic of a software system that can lead to
system error.

3. System error: an erroneous system state that can lead to
unexpected behavior by the users

4. System Failure: an event that can occur at a point of time leading the
system to deliver unexpected results to the users

Regardless of the classification, there has to be techniques to resolve faulty
behaviors. These approaches are classified as follows [26]:

1. Fault Avoidance: this approach depends on adopting best practices,
tools, programming languages and techniques to minimize error-

A Pervasive Computing Business Reference Architecture Khaled, Hosny, and Shalan

27

prone problems caused by humans.

2. Fault Detection and Removal: by using validation and verification
techniques to increase the probability of detecting faults before the
system is used

3. Fault Tolerance: these are techniques that ensure that faults in the
system will not cause errors and if there are errors they will not cause
failure

The Fault Tolerance Requirements are summarized in Table 4.

Table 4 Fault Tolerance Feature Requirements

ID Name Note

13 Detect faults quickly The system must detect faults very quickly.

14 Minimize Faults The system must adopt all possible techniques to
avoid or minimize faults.

15 Minimize the
probability of an object
to be offline

The system must ensure the longest number of hours
for its object(s) in order to keep providing the
automation service for its interacting devices and
users.

16 Reduce Error
consequences

If an error occurred, then the system must reduce its
impact.

17 Show proper error
message

The system must show a friendly, descriptive, and
directive error message.

18 Take the proper
corrective action

The system must take the proper corrective action to
rectify the error and reduce its impact.

4-5 HETEROGENEITY OF DEVICES

Heterogeneity of devices implies diverse features that are best functioning
within the manufacturer’s devices. Only the manufacturer’s developers can
make the best solution out of their devices. There are of course architectural
approaches to resolve this dilemma; however, it is still a dilemma with
incomplete and insufficient solutions.

Let’s take a single famous example, smart mobile phones. There are different
key players in the market like Samsung, Apple, and HTC. Every manufacturer
has its own OS. For example, Samsung uses Google Android, Apple uses
iOS, HTC uses Android and Windows, and Nokia uses Symbian OS [27].
There are different sizes for the phones, and they come now with bigger sizes
that range from handy-small phones to large tablets. Rendering a video on
these different devices varies noticeably.

Integration projects are quite costly and they usually exceed their timelines at
a very high investment cost, worldwide [28]. The factors that increase the
risks of the integration projects include the following:

1. As the number of heterogeneous devices increases, the risks and
development time increase as well.

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

28

2. The number of integration points: Risks and development time
increase as integration points tend to increase.

3. The availability of documentation that describes the device interface:
This issue is considered a real problem with legacy systems that
depended on developers who did not value the importance of
documentation.

4. The availability of good architects: who can understand the whole
picture and build a robust integration architectural model.

5. The learning curve: for the developers who should learn the new
interfaces and use the knowledge to understand the integration
problems.

6. The availability of a development environment: that covers all different
integration interfaces. This will minimize the risk of faulty functions
during run-time after deploying the developed software.

The Heterogeneity of Devices Requirements are summarized in Table 5.

Table 5 Heterogeneity of Devices Feature Requirements

ID Name Note

19 Maximize the number
of device
technologies

Allow different devices that use different technologies to
join/leave the pervasive system with minimal human
involvement.

20 Provide a unique
identifier for every
object

Every object should have a unique identifier that does
not conflict with other objects such as IP or MAC
address.

21 Render content on
maximum number of
devices

Allow different devices to render the same content
according to their screen dimensions, network
bandwidth capacity, and processing capabilities. The
content should be visible, readable, and interactive.

4-6 INVISIBILITY

A classical automation system is recognized by the users through integrating
its hardware and software assets. The user cannot complete his/her tasks
without using the computer explicitly to achieve his/her goal. This classical
experience includes some basic activities as follows:

1. Switch on the computer.
2. Log on to the operating system.
3. Go to the software location.
4. Run an executable file of the software.
5. Navigate inside the software and supply it with the required inputs.
6. Apply the changes and wait for the output.

The invisibility feature should ideally eliminate almost all of the above activities
and replace them with the implicit input [22] and invisible automation of
activities. For example, the system may use user movements, activities,

A Pervasive Computing Business Reference Architecture Khaled, Hosny, and Shalan

29

writings, and gestures as input that guides the system to achieve the goal of
the customer. On the other hand, the user may need to interact with the
system in some situations, but they should be as minimal as possible.

Invisibility requirements are summarized in Table 6.

Table 6 Invisibility Feature Requirements

ID Name Note

22 Minimize unneeded
interactions with the
system

The system must automate as many activities as
possible in order to minimize interaction with the
system.

23 Remove unnecessary
motions

A pervasive system should reduce the time and effort
that people usually take to complete their tasks by
making them simple and intuitive.

24 Conceal the part
object(s) of the
pervasive system

By concealing the system part object(s) in the smart
environment fabrications as much as possible.

25 Minimize the use of
explicit input

The system should detect inputs implicitly and
minimize the use of traditional keyboard and pointing
devices [24].

4-7 PRIVACY AND TRUST

We all have private information about ourselves. Humans reveal private
information about themselves only to those whom they trust, even those well
known to their media. The issue of privacy and trust is crucial for pervasive
computing systems. There are always sensors in such systems that collect
data about different objects like temperature, images, sounds, locations, etc…
We decided to merge privacy and trust as one quality attribute because they
are interrelated. As shown by studies and experiments [29], high trust
compensates for low privacy and vice versa.

We see the issue of privacy and trust as a three dimensional model. The
dimensions are:

1. Information: this information could be classified as public, social or
private. Information is also captured through direct input from users
or detected from their activities, or sensed from the environment.

2. Trusted entities: these trusted entities could be classified as highly-
trusted, medium-trusted, or low-trusted entities which could be
humans or devices.

3. Situations: such situations are two-dimensional variables including
time and location [30]. For example, people may be willing to reveal
private information about themselves with parents or doctors. People
may reveal information also whenever they use their personal
notebooks or cell phones.

As explained above, information is not always classified as private, social, or
public. Moreover, trusted entities are not always on the same level. There

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

30

are some entities, human or devices, that are classified as highly-trusted for
one person, but those same entities may not be trusted for others. Devices
may also be classified as personal, which means they are highly-trusted. For
example, headphones are devices that could be used in a private manner
[30].

We can summarize the requirements for privacy and trust in a pervasive
system as shown in Table 7.

Table 7 Privacy and Trust Feature Requirements

ID Name Note

26 Certify trusted
entities

Entities that will manipulate information should be certified.
For example, a system may require registration with
details, and then an admin reviews it in order to grant the
right authority level.

27 Classify
Information

The system must be able to differentiate among private,
social, and public information.

28 Reveal
Information
controllably

The system must reveal information to authorized entities
only based on its own classification, and on the trust level
of the authorized entities.

29 Track Information The system should trace private information to other
entities. Traceability may be used later on by the user who
owns this information if it is misused.

4-8 QUALITY OF SERVICE

Quality of service in our scope refers to the agreement protocol that the
pervasive system signs with users and other systems about its service
boundaries. For example, the system may declare that it can serve a user
within 0.01 seconds for the requested data and that the time can increase by
a maximum of 1 second for a number of concurrent users which does not
exceed 1000 at the same time. In other words, it is the ability of the system to
meet deadlines [23]. We can classify a deadline as [31]:

1. Hard deadline: if the system does not meet its deadline, then the
operation is considered failed. This is obviously found in car
embedded system, as it is not acceptable that the brake sensor
delays its response and causes accidents.

2. Soft deadline: where the system may exceed the deadline. The
result in this case is controversial, since it could be considered failed,
succeeded with a lower percentage or the deadline is just there for
reporting and future improvement considerations. For example, if a
movie encoder slips its deadline causing a slight pause, it only
degrades the QoS and it could be acceptable or rejected according to
the situation.

QoS boundaries can be applied across all the system quality features like
security, context awareness, and fault tolerance.

The QoS Requirements are summarized in Table 8.

A Pervasive Computing Business Reference Architecture Khaled, Hosny, and Shalan

31

Table 8 Quality of Service Feature Requirements

ID Name Note

30 Declare service/quality
feature boundaries

The system should specify its acceptable
boundaries for each feature or service by which the
users can acknowledge the failure of the service if
the deadline is breached.

31 Minimize average
processing capability

The system should process tasks very quickly and
on time.

32 Monitor and improve QoS
boundaries

The system must continuously monitor its QoS for
the different services and work on improving them
whenever possible.

33 Specify hard/soft
deadline

The system must flag each response deadline for
being a hard or a soft deadline.

4-9 SAFETY

The safety characteristic addresses two aspects of the pervasive system. The
first is the system safety, which is concerned with its hardware wellbeing. The
second is concerned with the environment’s safety where interacting users
and machines are kept safe from physical harm or damage [25]. In both
cases, safety is very important as it makes no sense to have a system that
can damage itself or harm its environment.

When it comes to organizing priorities, then a pervasive system must sustain
its hardware healthiness unless this could cause harm to its users. Yang and
Helal [32] advise that any solution must cover the four main components of
the system which are: device, service, user, and space.

Safety Requirements are summarized in Table 9.

Table 9 Safety Feature Requirements

ID Name Note

34 Alert if safety is or about
to be compromised

Alerts could be in multiple forms. For example, an
alert could appear on a screen and is associated
with a high sound.

35 Allow the user to
override/cancel system
decisions

If the system makes a wrong action that can
cause a potential risk for users, then allow the
users to override its action or cancel it.

36 Avoid conflicting side
effects

The system must take proper actions to avoid
side effects on people and devices.

37 Avoid invalid operational
directives

The system must provide safety limits for critical
operations in order not to cause damage based
on wrong user input.

38 Ensure that generated
rules do not conflict with
system policy

The system may generate new rules driven from
its knowledge base. The new rules must not
conflict with the system policy that governs the
usage of the system.

39 Minimize conflicting
usage of shared
resources

The system must be able to resolve conflict over
shared hardware resources.

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

32

40 Override system rules by
the regulator

The regulator should have the authority to
override system rules in critical situations in order
to apply its rules on all concerned members of the
society

41 Provide maximum
protection for the
environment

Interacting users and machines should be
protected from injury and damage.

42 Resolve conflicts among
objects by an
administrator

There should be a way for the administrator to
resolve conflicting situations among objects.

43 Respect societal ethics The system must abide by the societal ethical
standards.

4-10 SECURITY

This is a classical and also a critical aspect for any pervasive system. It
becomes even more important in a pervasive system whose nature requires
high flexibility, openness, mobility, and interaction with new devices which may
not be trusted [33]. The eternal goal for this characteristic is to provide data
protection and fight system attacks. The term “Data” here refers to any kind of
data the system stores or transmits. For example, if a user tries to access the
system, it implicitly means that he/she will transmit data (login credentials) to
access his/her profile (stored data). The system must ensure the integrity of
the users’ profiles so that they can access the system later on.

Security risks are handled using three approaches [34]:

1. Eliminate the threat: during the design of the system, the risks are
identified and the solution is designed in a way that prevents them
from the beginning.

2. Mitigate the risk: it is not possible to eliminate the risks but the
system can take counter-measures to eliminate harm or remove it.

3. Accepted risk: this approach can be adapted if risks cannot be
eliminated or mitigated. However, users of the system must
understand such risks before using the system.

We do not recommend allowing anonymous usage of the system services and
resources similar to what was proposed in [12]. Instead, the privacy of the
users should be protected and must be revealed only for authorized entities.

There are differences between Security and Privacy and Trust:

1. Security is concerned with the policies that govern the data
manipulation and availability while privacy is concerned with the
appropriate use of the data.

2. Security rules are embedded in the system, while privacy and trust is
about corporate and personal responsibilities.

3. Strong security policies minimize the risk of violating the privacy of
information. However, there is no guarantee that responsible people

A Pervasive Computing Business Reference Architecture Khaled, Hosny, and Shalan

33

about the private data will not reveal it to unauthorized entities (e.g.
selling data to third-party agencies for digital advertisements).

Security Requirements are summarized in Table 10.

Table 10 Security Feature Requirements

ID Name Note

44 Disallow anonymous usage
of the system

The system must not allow anonymous access to
system resources and services.

45 Enforce Security rules on
all objects

The system must ensure that the security policy is
applied on all devices that join the system.
Devices that fail to fulfill the security requirements
must disconnect immediately.

46 Ensure secure data
transmission

Data transmission among devices must be
secured and protected against intruders [11].

47 Maintain data integrity The system must ensure corruption-free and
alteration-free data.

48 Prevent data leakage Provide maximum protection for data in order to
avoid leakage to unauthorized persons [11].

49 Provide data access rules Data should be accessed whenever needed by
different entities, persons or machines, according
to the data security access rules.

50 Take counter-measures to
mitigate security threats

The system must take counter-measures to
ensure that risks generated from security threats
do not cause any harm to system users.

51 Announce malfunctioning
smart objects

Some objects may harm the environment, and the
community must be aware of such objects in order
to put them in the black list.

4-11 SERVICE OMNIPRESENCE

Omnipresence means “present everywhere at the same time.” Service
Omnipresence means that the user must get the feeling that he/she is
carrying computer services whenever he/she wants and wherever he/she
goes. In other words, the user should be able to use his/her computing
services whenever he/she wants and in almost any place. Given that it is
almost impossible to facilitate computing services everywhere and at any
time, it is important that the user gets this feeling.

We will use the term perception instead of feeling in order to provide a better
understanding for this quality feature. Perception is the ability to recognize
something based on its form. The perception process is dependent on the
features of the object and the organization of these features [19]. One can
perceive a cat from its main features (head, legs, tail, and sound) but these
features have to be allocated correctly in order to call this object a cat. The
same happens in pervasive computing systems, the basic features of the
pervasive system have to exist, e.g. sensors, context awareness, and
actuators. If the pervasive system is spread across a large space, then the
sensors should be spread all over the environment professionally and in a

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

34

way that serves the user’s needs.

The Omnipresence Requirements are summarized in Table 11.

Table 11 Service Omnipresence Feature Requirements

ID Name Note

52 Distribute computing
power

It is highly recommended to distribute computing
capabilities in the environment where a pervasive
system operates.

53 Enrich the experience
of the highly used
scenarios

Such scenarios must get the highest attention and
enrichment with the pervasive features (sensors,
awareness, actuators, intelligence)

54 Provide Informative
messages

Make sure to guide the user and build up experience
through hints, tips, and messages.

55 Use a unique user
identifier

A unique user identifier that can be used to access
different devices which can give the user the feeling
that the system knows him/her.

56 Utilize the user mobile
phone

Users depend heavily on their mobile phones. Smart
phones are now considered a small computer with
multiple capabilities. Hence allow the user’s mobile
phone to be part of the system

5- TRADE-OFF ANALYSIS

In order to analyze relationships among the quality features, we studied the
relationships among the requirements of the quality features. For example,
we found that the requirement #55 “Use a unique user identifier” has a
possible conflict with the requirement #20 “Provide a unique identifier for
every object”. This is because a user may have more than one device joining
the pervasive system, but the user must be identified all time as the same
user not a different one. So, we decided to resolve any possible conflict by
making the requirement “Use a unique user identifier” supersede because
having a unique user identifier will ensure that different rules associated with
that user are cascaded properly for devices associated with him/her. This
indicates that there is a possible conflict between the Service Omnipresence
feature and the Heterogeneity of Devices feature. We believe that our
decision is applicable in any business domain based on our rationale.

There are other requirements that maximize or minimize the expected value
from other requirements. For example, requirement #52 “Distribute computing
power” maximizes the value of requirement #10 “Capture Knowledge about
users” since distributed computer power, including sensors, can capture more
information about users, their habits, movement patterns, and routine actions
over the space of the smart environment. On the other hand, requirement #55
“Use a unique user identifier” minimizes/eliminates the threat in requirement
#44 “Disallow anonymous usage of system” as the user will be able to
use the system only if he/she is identified. Accordingly, anonymous usage of
the system will not be allowed.

We modeled the requirements relationships, shown in the Appendix, and as

A Pervasive Computing Business Reference Architecture Khaled, Hosny, and Shalan

35

explained earlier in our approach, using the conflict, maximize, and minimize
stereotypes. We got 44 relationships for 39 requirements. The relationships
among the quality features within the research scope are summarized as
follows:

1. The Service Omnipresence and Adaptable behavior features have the
highest number of outgoing minimize relationships related to 4 and 1
quality features, respectively.

2. The Safety and Fault tolerance features have the highest number of
incoming minimize relationships and they related to 2 and 3 quality
features, respectively.

3. The Service Omnipresence feature has the highest number of
maximize relationships and it is related to 4 quality features.

4. The Safety and Privacy and Trust features have the highest number
of maximize relationships and they are related to 4 and 3 quality
features, respectively.

5. The Security feature conflicts with the Quality of Service feature in 3
requirements.

6. The Context Sensitivity feature does not conflict with Adaptable
Behavior nor Fault Tolerance.

7. The Device Heterogeneity and the Security features have the highest
conflict relationships.

Fig. 3 highlights the superiority of quality features, derived from Table 13 (in
the appendix), whose requirements may have conflicts and the direction of the
decision of the feature that should supersede. The arrow starts from the
superseding feature. For example, ST has a higher priority than the QoS
since they both conflict on 3 requirements and the resolution is in favor of the
requirements in ST. The conflict among the quality features is resolved by
resolving the conflicts between the requirements. It is clear that the overall
superiority of quality features cannot be detected from the conflict relationship
only since the Adaptable behavior and Invisibility quality features are not
linked to the other quality features.

Figure 3 Quality Features Conflict Resolution Priority

In order to determine the overall superiority levels, we analyzed the maximize

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

36

and minimize relationships. The following facts could be detected:

1. There are enabler features: these are the features that appear as a
source with a percentage higher than 50%. Those features are AB,
CS, HD, and SO. The fulfillment of the requirements of these features
will help other features achieve their requirements. One may think of
the enabler feature as a tool similar to what was explained by the
activity theory. So, we can define the enabler feature as “the feature
that has the requirements that minimize or maximize the value of
other requirements.”

2. There are constraining features: these are the features that appear
as a destination with a percentage higher than 50%. The
requirements that belong to these quality features are empowered by
the enabler features and are enforced on the system as constraints.
These features are PT, QoS, SY, ST, FT, and EC. One may think of
the constraint feature as a rule similar to what was explained in the
activity theory. So, we can define the constraint quality feature as
“the feature that has ruling requirements that must be fulfilled by
other quality features.”

3. The Invisibility Feature role is unclear: it is not possible, from the
given requirements and relationships, to decide if the Invisibility
feature is an enabler or a constraint feature since it appears 50% as
source and 50% as destination.

Fig. 4 shows a graphical classification of the enabler and constraint features
with their relative proximity from the Enabler and Constraint categories.

Figure 4 Enabler-Constraint Quality Features Categories

If we follow the chain of superiority depth in Fig. 3, and based on the finding of
the Invisibility feature which has no clear classification, and given that the
Adaptable behavior feature supersedes Invisibility (Fig. 3), we conclude the
following priority layers (pyramid in Fig. 5). The rule is that:

1. Features that have no incoming arrow have higher priority.

2. The next layer includes features that are nested with one incoming
arrow, and so on.

A Pervasive Computing Business Reference Architecture Khaled, Hosny, and Shalan

37

3. The Adaptable Behavior and Invisibility are added at the base of the
pyramid since both features are not connected with the rest of the
quality features.

Figure 5 Quality Features Priority Pyramid

We can further explain the relative weight of every quality feature in terms of
complexity and its impact on other features and the number of requirements in
every quality feature. We give a score for every quality feature calculated as
the number of requirements per feature multiplied by the number of
requirements relationships multiplied by the number of features that are
covered by these relationships.

We can explain the complexity equation as follows:

1. The requirements in a feature represent its weight.

2. The relationships of the requirements in a feature represent its
collaboration weight with other requirements.

3. The number of covered features represents the diversity of the
collaboration.

For example the Safety feature has 10 requirements, 11 relationships, and its
relationships cover 4 features. By multiplying 10 by 11 by 4, we get the safety
complexity score as shown in Fig. 6. Fig. 6, which is based on the total
scores of the quality features, shows that 4 quality features (Security, Safety,
Service Omnipresence and Fault Tolerance) represent 67.6% of the overall
weight for the quality features. In other words, the requirements of these
features will need deeper analysis to ensure that the system is implemented
on solid basis. It does not mean that the other features are less important.
However, in a real project, for example, a decision could be taken to assign
more experienced analysts and architects to study these 4 features, or give
more time to analyze their requirements.

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

38

Figure 6 A Pareto diagram for the quality features accumu-

lated complexity weight

In order to evaluate our priority scale of features, we ran a survey with 17
persons asking them to give a score of importance from 1 to 5 for every
requirement where 1 means (not important at all) and 5 means (extremely
important). The survey was categorized on features with their requirements.
All descriptions of the features and the requirements were given to the
respondents. The survey was conducted as a blind study where all the
knowledge is given in the survey with no examples or detailed explanations.
The respondents had different years of experiences in software engineering in
general and in different business domains like Telecommunication, mobile
applications, web applications, ubiquitous computing, and Human Computer
Interaction. Nine of them have over 15 years of experience. Some of the
respondents are in management positions and the majority are involved in
technical activities.

We averaged the score for every requirement and we then took the average
of the requirements that belong to a specific quality feature. We then got a list
of 11 quality features ordered according to the given average score.

The results that we got were very interesting. We found that respondents had
very close points of views that are similar to our statistical analysis as shown
in Fig. 5 and Fig. 6. Although the features were not in exactly the same order
as in Fig. 6, the results were segmented almost the same as the priority
pyramid in Fig. 5. The standard deviation (SD) of the difference of ranking
between the survey order and the complexity order, as shown in Table 12, is
2.3741 which is relatively small. If we divide the number of features by the SD,
the result will be 4.8, which indicates that we can segment the ranking of the
features into 5 segments.

A Pervasive Computing Business Reference Architecture Khaled, Hosny, and Shalan

39

Table 12 Comparison between the Survey score and the
Complexity Score

Feature
Survey Order

(SUO)

Complexity order

(CXO)

Difference

(CXO – SUO)

FT 1 4 3

PT 2 6 4

ST 3 2 -1

SY 4 1 -3

SO 5 3 -2

QoS 6 8 2

CS 7 7 0

AB 8 9 1

HD 9 5 -4

IN 10 11 1

EC 11 10 -1

We derive the following findings from the trade-off analysis study:

1. Requirements Relationships are indicative of their priority: a
reasonable conclusion about the priority of the system requirements
can be reached based on the statistical analysis of the requirements
relationships by either using the complexity score method or the
priority resolution method.

2. Priority is not static: Although the system architect can define a
specific priority for every quality feature during the development
phase or at runtime, the priority of the feature can be changed
according to the context of the problem. The change of ordering could
be 2-3 steps up or down as per the SD value. Changes of the priority
that exceeds 2 steps must be carefully verified to ensure that the
overall goal of the system can still be achieved.

3. The Constraint Feature is more important: although the pervasive
systems sell for the smart features like context sensitivity and the
adaptable behavior, the system will not be usable if features like
safety, security, and privacy and trust are not treated equally to the
enabler features.

6- CONCLUSION

We introduced a comprehensive reference requirements model for pervasive
computing systems that can be easily adapted by software and system
architects. Our approach of using the activity theory and process re-
engineering concepts to analyze the requirements proved to be an efficient
technique. We were able to provide a deeper understanding of the
relationships among the requirements and link them with human activities.
Business Analysts and Architects can use the requirements model and build
relationships with the project’s functional requirements, as we did, in order to

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

40

build better architectural models. The reference architecture will save the
business analyst time as well, letting him/her focus on the project’s functional
needs.

This reference model can also be useful to study domain areas like the IoT,
embedded systems, M2M, and autonomic computing. They all share the
same basic requirements represented in our model.

We understand that real projects may have time, budget, and resource
constraints that hinder the project team from running a comprehensive study
to analyze business and functional requirements of a system. Accordingly, it
is a good opportunity to use this reference architecture as a base to study
project requirements. Moreover, some of the project timelines could be
organized based on priorities as was explained in the trade-off analysis and
relationship dependency. To our best knowledge, the subjective evaluation of
the requirements is the dominant method used by the software engineers to
decide on the priority of the requirements. So, it is an advantage to have a
statistical approach that gives accurate results.

The quality features presented above may not be complete. However, they
have all the essential requirements. We did not want to add detailed
requirements since this would not make the business reference architecture
generic enough. Our goal is to introduce a comprehensive business reference
architecture that provides a conceptual model for the smart environment. It
will also have an extended feature model that will have values and issues
driven from the requirements model with helpful breakdown attributes for
measuring their performance. The approach breaks down the complexity of
the pervasive system and that makes it easier for the architect to define
compelling solutions.

We are currently studying some business domains (e.g. retail, emergency,
and learning) for which the trade-off analysis results can best be applied. We
will research how the weights of requirements in these domains can vary with
respect to the weights of the quality features. In other words, we will research
the impact of the generic requirements model of the quality features on other
requirements models from different business domains.

Our aim is to provide a technical reference architecture that satisfies the
requirements of the business model. Hence, we will also study other quality
features that we did not address in the scope of this paper like spontaneous
interoperability, scalability, openness, service discovery, and function
composition [16]. Identifying the referenced business architecture layer for
pervasive computing is the first step towards building a practical technical
reference architecture. We also have an ambitious plan to carry out both
subjective and quantitative evaluations for the generated technical
architecture.

A Pervasive Computing Business Reference Architecture Khaled, Hosny, and Shalan

41

APPENDIX

Table 13 shows relationships among the requirements of the quality features.
Table 13 Quality Features requirements relationships

Source
Feature

Source
Req. ID Relation

Dest.
Feature

Dest.
Req. ID

Superseding
Req.

AB 2 mi SY 39
 AB 2 mi SY 37
 AB 2 mi SY 36
 AB 1 mx QoS 32
 AB 3 mx SY 34
 AB 3 mx SY 35
 CS 5 mx PT 27
 CS 5 cf PT 28 28

CS 5 mx EC 10
 CS 7 mx QoS 32
 CS 7 mi FT 16
 CS 6 mi FT 16
 EC 10 mx EC 11
 EC 10 cf PT 28 28

EC 11 mx EC 12
 FT 18 mi IN 22
 FT 13 mi FT 16
 HD 19 cf SY 39 39

HD 19 cf SY 36 36

HD 19 cf FT 14 19

HD 19 cf ST 45 45

HD 21 mx SO 53
 HD 21 mx SY 35
 HD 20 mx ST 49
 HD 20 mi SY 39
 HD 20 mi ST 44
 IN 24 mx SY 41
 IN 22 cf AB 3 3

ST 49 mx PT 28
 ST 46 cf QoS 31 46

ST 45 cf QoS 31 45

ST 45 mx PT 28
 ST 50 mx SY 41
 ST 50 cf QoS 31 50

SO 55 mx PT 26
 SO 55 cf HD 20 55

SO 55 mx ST 49
 SO 55 mi ST 44
 SO 56 mx PT 26
 SO 56 mx HD 21
 SO 52 mi QoS 31
 SO 52 mx EC 10
 SO 54 mi FT 16
 SO 54 cf PT 28 28

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

42

ACKNOWLEDGMENT

We would like to thank the following experts for their help and support in this
research work as participants in the focus group workshop study:

 Ahmed Ibrahim and Hassan Ali: IBM Egypt
 Hany Ouda: Etisalat Egypt Telecommunications
 Mohamed H.Abdelrahman: Vodafone Egypt Telecommunications

REFERENCES

[1] M. Weiser, “The Computer for the 21st Century,” Scientific American,
September, 1991.

[2] Intel Edison, http://www.intel.com/content/www/us/en/do-it-
yourself/edison.html [Last accessed: December 2016].

[3] ARTIK Series, https://www.artik.io/ [Last accessed: December 2016].

[4] B. Connolly, "Business IoT Connections Expected to Hit 5.4 Billion By
2020," http://www.pcadvisor.co.uk/feature/internet/business-iot-
connections-expected-to-hit-54-billion-by-2020-3599257/ [Last accessed:
December 2016].

[5] B. Bangerter, S. Talwar, R. Arefi and K. Stewart, "Networks and devices
for the 5G era," IEEE Communications Magazine, vol. 52, no. 2, pp. 90-
96, February 2014. doi: 10.1109/MCOM.2014.6736748.

[6] M. Castelluccio, "A New Bluetooth in 2016," Strategic Finance, pp. 55-56,
2015.

[7] S. Jacobs, "Driving Future Technology With Solar-Powered Energy
Harvesting," Product Design & Development, pp. 26-27, 2015.

[8] D. Waltenegus, P. Juha, and V. De Florio, “Existing challenges and new
opportunities in context-aware systems,” Proceedings of the 2012 ACM
Conference on Ubiquitous Computing (UbiComp '12), ACM, New York,
NY, USA, pp. 749-751, 2012.

[9] R. Cloutier, G. Muller, D. Verma, R. Nilchiani, E. Hole, and M. Bone, “The
concept of reference architectures,” Systems Engineering, vol. 13, pp.
14-27, Jan 2009.

[10] C. Machado, E. Silva, T. Batista, J. Leite, E. Nakagawa, “RA-Ubi: a
Reference Architecture for Ubiquitous Computing,” Proceedings of the 8th
European Conference on Software Architecture (ECSA), 2014.

A Pervasive Computing Business Reference Architecture Khaled, Hosny, and Shalan

43

[11] I. D. Addo, S. I. Ahamed, S. S. Yau, and A. Buduru, “A Reference
Architecture for Improving Security and Privacy in Internet of Things
Applications,” IEEE International Conference on Mobile Services (MS),
pp. 108,115, June 27 -July 2, 2014.

[12] European Lighthouse Integrated Project: Internet of Things Architecture
IoT-A Project Deliverable D6.2 – Updated Requirements. http://www.iot-
a.eu, January 2011.

[13] R. Al Ali, I. Gerostathopoulos, I. Gonzalez-Herrera, A. Juan-Verdejo, M.
Kit, and B. Surajbali, “An Architecture-Based Approach for Compute-
Intensive Pervasive Systems in Dynamic Environments”, International
Workshop on Hot TopiCS in Cloud Cloud service Scalability (HotTopiCS
2014), Dublin, Ireland, Mar 2014.

[14] M. Soegaard and R. Friis Dam, “The Encyclopedia of Human-Computer
Interaction”, 2nd Ed., the Interaction Design Foundation, 2011.

[15] N. Kim, S. Lee, and T. Ha, “Understanding IoT Through the Human
Activity: Analogical Interpretation of IoT by Activity Theory,” HCI
International, Posters’ Extended Abstracts, vol. 528 of the series
Communications in Computer and Information Science pp 38-42,
Springer International Publishing, 2015.

[16] H. Gleitman, J. Gross, D. Reisberg, “Perception, “Psychology, 8th Ed.
W.W.Norton & Company, pp.258-298, 2011.

[17] G. V. Bodenhausen and K. Hugenberg, “Attention, Perception, and Social
Cognition,” F. Strack & J. Förster (Eds.), Social cognition: The basis of
human interaction, Philadelphia: Psychology Press, pp. 1-22, 2009

[18] K. Cherry, “Perception and the Perceptual Process,”
https://www.verywell.com/perception-and-the-perceptual-process-
2795839 [Last accessed: December 2016].

[19] H. Gleitman, J. Gross, D. Reisberg, “Perception, “Psychology, 8th Ed.
W.W.Norton & Company, pp.181-217, 2011.

[20] A. Gunasekaran and B. Kobu., "Modelling And Analysis Of Business
Process Reengineering," International Journal of Production Research,
vol. 40, 2002.

[21] R. Spínola, and G. Travassos, “Towards a framework to characterize
ubiquitous software projects,” Information and Software Technology, vol.
54, pp. 759-785, 2012.

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

44

[22] S. Dobson, R. Sterritt, P. Nixon, M. Hinchey, "Fulfilling the Vision of
Autonomic Computing," Computer, Vol.43, no.1, pp.35-41, Jan. 2010.

[23] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, “Mobile And
Ubiquitous Computing,” Distributed Systems Concepts and Design, 5th
Ed. Addison-Wesley Publishing Company, pp. 817-878, 2012.

[24] G. D. Abowd, E. D. Mynatt, T. Rodden, "The Human Experience [Of
Ubiquitous Computing," Pervasive Computing, IEEE , vol.1, no.1, pp.48-
57, Jan.-March 2002.

[25] O. M. Khaled, H. M. Hosny, and M. Shalan, “On the Road to a Reference
Architecture for Pervasive Computing,” The 5th International Joint
Conference on Pervasive and Embedded Computing and Communication
Systems, Angers, France, Feb 11-13, 2015.

[26] I. Sommerville, “Dependability and Security,” Software Engineering, 9th
Ed, Addison-Wesley Publishing Company, 2011.

[27] M. Nosrati, R. Karimi, and H. A. Hasanvand, “Mobile Computing:
Principles, Devices and Operating Systems,” World Applied
Programming, vol. 2, issue 7, pp. 399-408, July 2012.

[28] S. Purao, S. Paul, and S. Smith, “Understanding Enterprise Integration
Project Risks: A Focus Group Study,” 18th International Conference on
Database and Expert Systems Applications, DEXA ’07, pp. 850–854, 3-7
Sept. 2007.

[29] A. N. Joinson, U. Reips, T. Buchanan, and C. B. Paine Schofield,
“Privacy, Trust, and Self-Disclosure Online,” Human–Computer
Interaction, vol. 25, pp. 1-2, 2010.

[30] V. Kostakos, E. O'Neill, A. Penn, “Designing Urban Pervasive Systems,”
Computer, vol. 39, no. 9, pp. 52-59, September 2006.

[31] S. Hua, G. Qu, "A New Quality of Service Metric for Hard/Soft Real-Time
Applications," Proceedings of International Conference on Information
Technology: Coding and Computing [Computers and Communications],
ITCC 2003, pp.347-351, 28-30 April 2003.

[32] H. Yang and A. Helal, “Safety Enhancing Mechanisms for Pervasive
Computing Systems in Intelligent Environments,” Sixth Annual IEEE
International Conference on Pervasive Computing and Communications,
2008.

A Pervasive Computing Business Reference Architecture Khaled, Hosny, and Shalan

45

[33] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, “Security in
Distributed Systems Concepts and Design,” 5th Ed. Addison-Wesley
Publishing Company, pp. 463-518, 2012.

[34] A. Ray and R. Cleaveland, “An Analysis Method for Medical Device
Security,” Proceedings of the 2014 Symposium and Bootcamp on the
Science of Security (HotSoS '14), ACM, New York, NY, USA, , Article 16 ,
2 pages, 2014.

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

46

