
A Comparative Analysis of DIT over MVG to
Improve Quality of Software

Vikash Chauhan(1) and Dharmendra Lal Gupta(2)

(1) Dept. of Computer Science & Eng., Kamla Nehru Institute of Tech. Sultanpur U.P. INDIA

E-mail: vikashit56@gmail.com

(2) Dept. of Computer Science & Eng., Kamla Nehru Institute of Tech. Sultanpur U.P. INDIA

E-mail: dlgupta2002@gmail.com

ABSTRACT

To predict the quality of software, software metric is one of the very important
elements. The relationship of Depth of Inheritance Tree metric with cyclomatic
complexity is a significant matter. Here in this paper the relationship of DIT
(Depth of Inheritance Tree) and MVG (McCabe's Cyclomatic Complexity) have
been explained using three real projects developed in JAVA language. The
authors have also empirically computed DIT and MVG metrics of these
projects and found the correlations between these two. It is found that on
increasing DIT, MVG also increases in polynomial form which is showing the
directly proportional relationship. This paper is providing an optimal value of
DIT up to that software will be quality software.

Keywords: Correlation of DIT and MVG, DIT, MVG

1- INTRODUCTION

Delivering high quality and highly reliable software is a mandatory goal for
software development companies. Basically quality of software depends on its
source code. If source code of any software is written in good way then its
quality will increase. Thus in this way the amount of resources needed to sup-
port the software will reduce. So today’s focus is on enhancing the software
development process [1].

There is an critical need for presenting the of various statistics for evaluating
the change-proneness for knowing what is wrong with our projects in progress
so that there is no burn out between the stakeholder working in the life cycle
of the application. Since, components of software are like organic compounds
that change internally and externally with multiple environmental and business
reasons. The major concern is maintenance and further development of the
software without conflicts, issues and bugs. Changeability and upgradeability
in software is very risky so to reduce this risk and to measure of impact of
changes we have to maintain our source code.

Changeability is the ease with which a source code can be changed. It is
evaluated through metrics calculated from the history of changes made.These
metrics reflect how well or bad is the change for the project in terms of it de-
gree however, the optimal of these metrics is matter of real concern as they

A Comparative Analysis of DIT over MVG Chauhan and Gupta

3

must be chosen in such a manner that they must measure the true image and
state of the software components with respect to the basic principles of soft-
ware stability with openness for further change [2].

The testing stage plays very important role to ensure the quality of the soft-
ware products in software development life cycle model, but it is the most re-
source consuming step in terms of time, effort, and costs. This testing activity
represents 50 to 70 percent of the total costs of a project [3]. To reduce these
resources we have to maintain our source code and also maintain its metrics.
These resources also depend on complexity of source code. If program is
very complex, it will be difficult to understand by the programmer. Complexity
plays a very important role to decide the effort, costs, and time of any project
or software. Sometimes complex program can be understood easily by the
computer or machine but it may be hard to understand by the programmer.

The main goal of this analysis study is to improve the quality of software. Im-
proving the quality of this software implies a reduction in development and
maintenance costs, hence a reduction in the costs of the whole company.
Higher quality software might also increase customer satisfaction and assur-
ance in the company and its products [4]. To carry out this improvement this
study will focus on computing software metrics over the software’s source
code and relationship among these metrics. This correlation study of metrics
will help us to measures the strength of relationships between two metrics, to
regression analysis, which determines the mathematical expression of the
relationship [5].

2- SOFTWARE QUALITY METRICS

Software metrics and software quality factors compose the software
quality metrics. These metrics provide measures of the software
attributes and may be in the form of checklists used to grade a document
produced during the development [6].

Software Quality Metrics (SQM) = Software Metrics (SM) + Software
Quality Factor (SQF)

Relationships between the set of metrics related to quality attributes
(factors) and rating of quality factors have been established via
regression analysis performed on empirical data. This relationship can
be shown via linear equation. An example is given below.

where:

 [7]

By creating the above relationship it is used as predictor. The
measurements are applied at specific times during the development.

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

4

Here data are created of three projects which will be discussed in further
section. The above mathematical relationship and other statistical
analysis are done on all three projects separately. There are following
aspects of this approach.

 At highest level it is user-oriented

 At lower level oriented it is software-oriented

 Provide attributes’ qualifications

 It is easy to use and can be applied any time during the software
development

Additional metrics, function, and criteria can be added as the software
technology changes [7].

3- SOFTWARE QUALITY METRICS

3-1 C & K (CHIDAMBER AND KEMERER) MATRICS

In 1994, Chidamber and Kemerer described [8] six metrics which are now
called ’CK metrics’.These six metrics have been successfully correlated with
the likelihood of error in software in many investigations. C&K metrics are
used

 To measure unique aspects of the OO approach.

 To measure complexity of the design.

 To improve the development of the software
These 6 metrics are given below one by one.

1) Weight Methods per Class (WMC)
WMC is a measure of number of methods implemented within a class. If all
method complexities are considered to be one unit, then WMC equals to the
number of methods.

2) Depth of Inheritance Tree (DIT)
The length of the maximum path from the node to the root of the tree is DIT
metric.

3) Number of children (NOC)
NOC is the number of immediate subclasses of a class in the hierarchy. This
is an indicator of the potential influence a class can have on the design and on
the system hierarchy.

4) Coupling between objects (CBO)
CBO is a count of the number of other classes to which a class is coupled.
The methods of one class use the methods or attributes of the other class is
called coupled classes.

5) Response for a Class (RFC)

A Comparative Analysis of DIT over MVG Chauhan and Gupta

5

The number of methods that can be invoked in response to a message in a
class is called RFC. This measures the amount of communication with other
classes.

6) Lack of Cohesion in Methods (LCOM)
The notion of degree of similarity of methods is used by LCOM metric. LCOM
measures the amount of cohesiveness present, how well a system has been
designed and how complex a class is [9].

3-2 MCCABE CYCLOMATIC COMPLEXITY

To evaluate the complexity of a method Cyclomatic complexity (McCabe) can
be used [10].

 It is used to calculate important information about constancy and
maintainability of software system from source code.

 It also provides guidance to the developer during the software project
to help control the design.

 This metrics provide detail information about software module to iden-
tify the areas of possible instability in the testing and maintain phase.

This metric measures the complexity of a control flow graph of a method or
procedure. The idea is to draw the sequence a program may take as a graph
with all possible paths. Using this relation “connections - nodes + 2”, com-
plexity is calculated and will give a number denoting how complex the method
is. An example is given in Figure 1. Errors and Complexity are proportional to
each other. Since complexity will increase the possibility of errors, a too high
McCabe number should be avoided [11].

Figure 1 The McCabe complexity metrics.

N= 2-3+2 = 1 N= 6-6+2 = 2 N= 11-8+2 = 5

As described in Laing et al. [12], McCabe et al. [11] mention cyclomatic com-

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

6

plexity, based on graph theory, is a measure of a module control flow com-
plexity. The cyclomatic complexity of individual methods can be combined to
calculate the complexity of the class [10]. A high 10 cyclomatic complexity
specifies that the code may be of low quality and difficult to test and maintain
[12]. In the next section authors discussed system that has important role in
this literature to find metrics.

4- SYSTEM DESCRIPTION

In this system there are three projects P0, P1, and P2 on which we have
applied following steps for regression analysis of metrics.

4-1 PROPOSED METHODOLOGY

Table 1 Proposed methodology

Steps Description

1 Project P0, P1 and P2 are written in java (Object Oriented Pro-
gramming Language).

2 Every project is compiled and tested on Net Beans 8.0.

3 Metrics of project P0, P1, and P2 are calculated using CCCC,
Source Code Monitor, SLOC and VIZZ Analyser etc.

4 The different combinations of CK metrics and MVG are made.

5 Statistics analysis of these metrics is done in step 6 and 7.

6 Linear and multi linear regression of metrics are done.

7 Correlation matrix of different metrics is calculated.

8 Model parameters are calculated.

9 Modal equations (mathematical expressions) of these metrics are
calculated.

10 Graphs of these metrics are drawn using MATLAB.

11 Analyse the behaviour of these metrics according to graph.

12 Predict the optimal value of MVG using modal equation.

4-2 LOC MEASUREMENT OF SYSTEM

A Comparative Analysis of DIT over MVG Chauhan and Gupta

7

To find the volume of code we have to need LOC detail of system. LOC
measurement is important because all the empirical analysis done on this
whole system. In project P0 we used 10 classes, 375 Source Lines of Code
(SLOC), 163 lines for comments, 115 blank lines, and this total is 653. In pro-
ject P1 we used 20 classes, 433 Source Lines Of Code (SLOC), 168 lines for
comments, 118 blank lines, and this total is 719. In project P2 we used 30
classes, 494 Source Lines of Code (SLOC), 168 lines for comments, 168
blank lines, and this total is 830. So in this way we analysed 60 classes and
2202 Lines of Code in our whole system. This analysis report is depicted in
Table 2.

Table 2 LOC details of system

Projects SLOC Comments Blank Lines Total LOC Classes

P0 375 163 115 653 10

P1 433 168 118 719 20

P2 494 168 168 830 30

Subtotal 1302 499 401 2202 60

4-3 FUNCTIONAL DETAILS OF SYSTEM

The complexity of any class depends upon its functionality. So functionality is
the important factor of system. Here it is discussed the details of methods and
variables of every class of every project. The functional details of system are
given in subsection.

1) Project P0:

This project has 10 main classes. There is no inheritance in any class. Every
class has different complexity level. The detail description of these classes is
given in Table 3.

Table 3 Detail description of project P0

Class Name Description

PercentageCalculation1 This class contains simple variables

PercentageCalculation2 This class contains 1 for loop

PercentageCalculation3 This class contains 1 for loop and if else

PercentageCalculation4 This class contains 1 for loop, if else, and if else inside
for loop

PercentageCalculation5 This class contains 1 for loop, if else, if else inside for
loop, and 1 other function GradeDisplayFunction()

PercentageCalculation6 This class contains 1 for loop, if else, if else inside for
loop, and 2 other functions GradeDisplayFunction(),
PercentageCalculateFunction()

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

8

PercentageCalculation7 This class contains 1 for loop, if else, if else inside for
loop, and 3 other functions GradeDisplayFunction(),
PercentageCalculateFunction() and third Display-
GradeMessage() inside GradeDisplayFunction()

PercentageCalculation8 This class contains 1 for loop, if else, if else inside for
loop, and 4 other functions GradeDisplayFunction(),
PercentageCalculateFunction() and third Display-
GradeMessage() inside GradeDisplayFunction() 4th
IsTotalMarksConditionSatisfied()

PercentageCalculation9 This class contains 1 for loop, if else, if else inside for
loop, and 3 other functions GradeDisplayFunction(),
PercentageCalculateFunction() and third Display-
GradeMessage() inside GradeDisplayFunction() and
switch case

PercentageCalculation10 This class contains 2 nested for loop

2) Project P1:

This project has 10 main classes and total 20 classes. There is single level
inheritance. Every class has different complexity level. The detail description
of these classes is given in Table 4.

Table 4 Detail description of project P1

Class Name Description

I1PercentageCalculation1 This program has single level inheritance

I1PercentageCalculation2 This program has single level inheritance and 1 for

loop

I1PercentageCalculation3 This program has single level inheritance and 1 for

loop and if else

I1PercentageCalculation4 This program has single level inheritance and 1 for

loop, if else, and if else inside for

loop

I1PercentageCalculation5 This program has single level inheritance and 1 for

loop, if else, if else inside for loop, and 1 other func-

tion GradeDisplayFunction()

I1PercentageCalculation6 This program has single level inheritance and 1 for

loop, if else, if else inside for loop, and 2 other func-

tions GradeDisplayFunction(), PercentageCalcu-

lateFunction() 2 function in parent class

I1PercentageCalculation7 This program has single level inheritance and 1 for

loop, if else, if else inside for loop, and 3 other func-

tions GradeDisplayFunction(), PercentageCalcu-

lateFunction() and 3rd DisplayGradeMessage() in-

side GradeDisplayFunction(); 3 function in parent

class

A Comparative Analysis of DIT over MVG Chauhan and Gupta

9

I1PercentageCalculation8 This program has single level inheritance and 1 for

loop, if else, if else inside for loop, and 4 other func-

tions GradeDisplayFunction(), PercentageCalcu-

lateFunction() and 3rd DisplayGradeMessage() in-

side GradeDisplayFunction(), IsTotalMarksCondi-

tionSatisfied; 4 function in parent class

I1PercentageCalculation9 This program has single level inheritance and 1 for

loop, if else, if else inside for loop, and 4 other func-

tions GradeDisplayFunction(), PercentageCalcu-

lateFunction() and 3rd DisplayGradeMessage() in-

side GradeDisplayFunction(), IsTotalMarksCondi-

tionSatisfied; 4 function in parent class and switch

cases

I1PercentageCalculation10 This program has single level inheritance and 2

nested for loops

3) Project P2:

This project has 10 main classes and total 20 classes. There is multilevel in-
heritance. Every class has different complexity level. The detail description of
these classes is given in Table 5.

Table 5 Detail description of project P2

Class Name Description

I2PercentageCalculation1 This program has 2 level inheritance

I2PercentageCalculation2 This program has 2 level inheritance and 1 for loop

I2PercentageCalculation3 This program has 2 level inheritance and 1 for loop

and if else

I2PercentageCalculation4 This program has 2 level inheritance and if else, and

if else inside for loop

I2PercentageCalculation5 This program has 2 level inheritance and 1 for loop,

if else, if else inside for loop, and 1 other function

GradeDisplayFunction()

I2PercentageCalculation6 This program has 2 level inheritance and 1 for loop,

if else, if else inside for loop, and 2 other functions

GradeDisplayFunction(), PercentageCalculateFunc-

tion()

I2PercentageCalculation7 This program has 2 level inheritance and 1 for loop,

if else, if else inside for loop, and 3 other functions

GradeDisplayFunction(), PercentageCalculateFunc-

tion() and 3rd DisplayGradeMessage() inside

GradeDisplayFunction(); 3 function in parent class

I2PercentageCalculation8 This program has 2 level inheritance and 1 for loop,

if else, if else inside for loop, and 3 other functions

GradeDisplayFunction(), PercentageCalculateFunc-

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

10

tion() and 3rd DisplayGradeMessage() inside

GradeDisplayFunction(); 3 function in parent class

I2PercentageCalculation9 This program has 2 level inheritance and 1 for loop,

if else, if else inside for loop, and 4 other functions

GradeDisplayFunction(), PercentageCalculateFunc-

tion() and 3rd DisplayGradeMessage() inside

GradeDisplayFunction(),

IsTotalMarksConditionSatisfied; 4 function in parent

class and switch cases

I2PercentageCalculation10 This program has 2 level inheritance and 2 nested

for loops

5- EMPERICAL STUDY

5-1 CALCULATION OF DIT AND MVG METRIC

We calculated DIT of these three projects separately using CCCC software.
There are Table 6, 7 and 8 which consist of DIT values of project P0, P1, and
P2 respectively.

1) Calculation of DIT and MVG of project P0:

Table 6 DIT and MVG details of project P0

Module Name DIT MVG

PercentageCalculation1 0 1

PercentageCalculation10 0 5

PercentageCalculation2 0 2

PercentageCalculation3 0 6

PercentageCalculation4 0 7

PercentageCalculation5 0 8

PercentageCalculation6 0 9

PercentageCalculation7 0 10

PercentageCalculation8 0 12

PercentageCalculation9 0 15

TOTAL 0 75

A Comparative Analysis of DIT over MVG Chauhan and Gupta

11

2) Calculation of DIT and MVG of project P1:

Table 7 DIT and MVG details of project P1

Module Name DIT MVG

ChildI1PercentageCalculation1 1 1

ChildI1PercentageCalculation10 1 5

ChildI1PercentageCalculation2 1 2

ChildI1PercentageCalculation3 1 6

ChildI1PercentageCalculation4 1 7

ChildI1PercentageCalculation5 1 8

ChildI1PercentageCalculation6 1 3

ChildI1PercentageCalculation7 1 3

ChildI1PercentageCalculation8 1 3

ChildI1PercentageCalculation9 1 6

I1PercentageCalculation1 0 1

I1PercentageCalculation10 0 1

I1PercentageCalculation2 0 1

I1PercentageCalculation3 0 2

I1PercentageCalculation4 0 2

I1PercentageCalculation5 0 2

I1PercentageCalculation6 0 6

I1PercentageCalculation7 0 7

I1PercentageCalculation8 0 10

I1PercentageCalculation9 0 10

TOTAL 10 86

3) Calculation of DIT and MVG of project P2:

Table 8 DIT and MVG details of project P2

Module Name DIT MVG

ChildI2PercentageCalculation1 1 1

ChildI2PercentageCalculation10 1 5

ChildI2PercentageCalculation2 1 2

ChildI2PercentageCalculation3 1 6

ChildI2PercentageCalculation4 1 7

ChildI2PercentageCalculation5 1 3

ChildI2PercentageCalculation6 1 3

ChildI2PercentageCalculation7 1 3

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

12

ChildI2PercentageCalculation8 1 3

ChildI2PercentageCalculation9 1 6

DchildI2PercentageCalculation1 2 1

DchildI2PercentageCalculation10 2 1

DchildI2PercentageCalculation2 2 1

DchildI2PercentageCalculation3 2 1

DchildI2PercentageCalculation4 2 1

DchildI2PercentageCalculation5 2 1

DchildI2PercentageCalculation6 2 1

DchildI2PercentageCalculation7 2 1

DchildI2PercentageCalculation8 2 1

DchildI2PercentageCalculation9 2 1

I2PercentageCalculation1 0 2

I2PercentageCalculation10 0 2

I2PercentageCalculation2 0 2

I2PercentageCalculation3 0 2

I2PercentageCalculation4 0 2

I2PercentageCalculation5 0 7

I2PercentageCalculation6 0 7

I2PercentageCalculation7 0 8

I2PercentageCalculation8 0 10

I2PercentageCalculation9 0 10

TOTAL 30 101

6- CORRELATION ANALYSIS

Using the result of Table 6, 7, and 8 we can make new Table 9.

Table 9 DIT and MVG of project P0, P1, and P2

Projects DIT MVG MVG Increased %

P0 0 75

P1 10 86 14.66

P2 30 101 34.6667

6-1 CORRELATION ANALYSIS BETWEEN DIT AND MVG

A Comparative Analysis of DIT over MVG Chauhan and Gupta

13

By using this correlation analysis we calculated the strength of relationship
between DIT and MVG. We also established a mathematical expression of
relationship and graphs between these two metrics.

1) Correlation coefficient (r) of DIT and MVG:
Using Table 10 we calculated the Correlation coefficient r.

Table 10 Correlation coefficient (r) of DIT and MVG

Projects DIT (x) MVG (y) x2 y2 xy

P0 0 75 0 5625 0

P1 10 86 100 7396 860

P2 30 101 900 10201 3030

Total x=40 y =262 x2= 500 y2=23222 xy= 3890

 
466.667

2

22 



n

x
xdx

 
340.667

2

22 



n

y
ydy

396.667
 


n

yx
xydxdy

 0.99485
22


 


dydx

dxdy
r

This value of r is positive which indicates that the slope will rise from left to
right in DIT and MVG’s graph.

2) Graph between DIT and MVG:
We used statistical data of Table 9 to draw linear graph in MATLAB (Matrix
Laboratory). We took MVG on Y-axis and DIT on X-axis. This graph is shown
in Fig 2.

Figure 2 Linear graph between DIT and MVG

3) Linear Equation between DIT and MVG:
Using the above statistical data given in Table 9 we found the following math-
ematical Equation 1. Here in this equation y is MVG and x is the DIT of the

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

14

system. Coefficients of this equation are p1 and p2.

 21 pxpy  (1)

n

x
p

n

y
p


 12

1p =0.85 2p = 76

On putting x (DIT) = 50 in Equation 1 we find
y = 0.85*50 + 76, y (MVG) = 118.5

7- OBSERVATIONS

Now we can say that when we change DIT to 50, MVG will be 118.5. This DIT
value indicates that if we want to restrict our system with MVG’s value = 118.5
then we have to take at most 50 value of DIT in our system. If our system
cannot handle greater than 100 MVG then we have an alarm (threshold) value
50 of DIT for our system.

Here we discussed about the regression analysis of DIT metric with respect to
MVG (complexity). It is measured that when we increase DIT, MVG also in-
creases in polynomial form. This paper provides an optimal value of DIT at
which we can have quality software after that value of complexity will increas-
es exponentially.

8- CONCLUSION AND FUTURE SCOPE

The empirical relations of DIT over MVG metrics have been computed in this
paper. It is found that this relationship provides a maximum limit of DIT after
which complexity will increase exponentially. The same has also been elabo-
rated by graphical and mathematical expressions in this paper. The future
scope of this work is shown point wise below:

1. This study may be replicated by using many new metrics and by making

different combinations of those and after making the combinations they
can find the correlations among those metrics.

2. One can make a system which tells them the relationship among those
new metrics.

3. One can also consider our project as reference for various predictions of
quality software related to metrics.

4. Using the concept of this paper the maximum as well as minimum limit of
any metric with complexity can be set.

 
  






221
)(

.

xn

yxxyn
p

x

A Comparative Analysis of DIT over MVG Chauhan and Gupta

15

REFERENCES

[1] S. Dick and A. Kandel, “Fuzzy Clustering of Software Metrics,” The 12th
IEEE International Conference on Fuzzy Systems, 2003. FUZZ ’03, Vol-
ume 1, pp. 642 – 647, May 2003.

[2] A. Urvashi, and A. Chhabra, “Change-Proneness of Software Compo-
nents,” IOSR Journal of Computer Engineering (IOSR-JCE), Volume 16,
Issue 2, Ver. VIII, pp. 45-48, Mar-Apr. 2014.

[3] H. Jie Lee, L. Naish, and K. Ramamohanarao, “Study of The Relationship
of Bug Consistency with Respect to Performance of Spectra Metrics,” 2nd
IEEE International Conference on Computer Science and Information
Technology, 2009, ICCSIT 2009, pp. 501 –508, Aug. 2009.

[4] C. Jin, Shu-Wei Jin, Jun-Min Ye, and Qing-Guo Zhang, “Quality Prediction
Model of Object-Oriented Software System Using Computational Intelli-
gence,” 2nd International Conference on Power Electronics and Intelligent
Transportation System (PEITS), 2009, Volume 2, pp. 120 –123, Dec.
2009.

[5] C. Zhang; Budgen, D., “What Do We Know about the Effectiveness of
Software Design Patterns?” IEEE Transactions on Software Engineering,
Volume 38, no.5, pp. 1213, 1231, Sept.-Oct. 2012.

[6] V. Chauhan, D.L. Gupta and S. Dixit, “Role of Software Metrics to Improve
Software Quality,” International Journal of Computer Science and Infor-
mation Technologies (IJCSIT), Volume 5 (3), ISSN: 0975-9646, pp. 4167-
4170, 2014.

[7] J. P. Cavano, “A Framework for the Measurement of Software Quality,”
Rome Air Development Center, James A. McCall General Electric Com-
pany.

[8] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object Oriented
Design Software Engineering,” IEEE Transactions, 20(6), pp. 476 –493,
Jun. 1994.

[9] Chidamber, Shyam, Kemerer and Chris F, “A Metrics Suite for Object-
Oriented Design,” M.I.T. Sloan School of Management E53-315, 1993.

[10] McCabe and Associates, “Using McCabe,” QA 7.0, 9861 Broken Land
Parkway 4th Floor Columbia, MD 21046, 1999.

[11] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, “Object-
Oriented Software Engineering: A Use-Case Driven Approach,” Addison-
Wesley, 1992.

[12] V. Laing and C. Coleman, “Principal Components of Orthogonal OO Met-
rics," Software Assurance Technology Center (SATC), 2001.

Int. J. of Software Engineering, IJSE Vol.10 No.1 January 2017

16

