
Cost-Aware Test Suite Minimization
Approach Using TBAT Optimization

Algorithm for Software Testing
Shounak Rushikesh Sugave(1), Suhas Haribhau Patil(2) and B Eswara Reddy(3)

(1) MIT College of Engineering, Pune, MH (INDIA)
E-mail: shounaksugave16@gmail.com

(2) Bharati Vidyapeeth University College of Engineering, Pune, MH (INDIA)
E-mail: suhas_patil@yahoo.com

(3) JNTUA College of Engineering, Kalikiri, Chittor District, AP (INDIA)
E-mail: eswarcsejntua@gmail.com

ABSTRACT

Traditional way of optimizing regression testing cost is to reduce subsets of
test cases from a test suite without compromising the test requirement. In
order to reduce the test suite, researchers have presented various test-suite
reduction techniques using coverage metrics and greedy search algorithms.
Besides greedy algorithms, optimization-based algorithms have played a
major role in test suite reduction. Accordingly, we developed a new
optimization algorithm called, TBAT algorithm to handle the diversity problem
in generating new solutions while finding the optimal test cases. Here, a
fitness function is developed to select the test cases optimally through the
TBAT algorithm using two constraints, satisfying the entire test requirement
and minimizing the cost measure. The proposed TBAT algorithm is
experimented with five programs from SIR using four different evaluation
metrics. The empirical study on the performance of the TBAT algorithm is
analyzed with various parameters and the comparison is done with the
greedy–based algorithm and the Systolic Genetic Search (SGS) algorithm.
The experimental outcome showed that the proposed TBAT algorithm
outperformed the existing algorithm in reaching the minimal cost
requirements.

Keywords: BAT algorithm, Optimization, Test case, Test suite, Test suite
minimization.

1- INTRODUCTION

Many crucial applications such as banking, medical instrumentation,
commercial avionics, nuclear power, etc. require high integrity software.
These software applications are subjected to extremely intricate verification
and validation procedures which involve some different tasks [1]. One of the
validation procedure which helps in improving the quality of the software is
software testing. Software testing is the most important method which
guarantees the quality of the developing software. Recently, many
researchers are focussing on regression testing [2]. Regression testing is the
most often used maintenance process which revalidates the modified
software. As the size of the test suite grows, the cost of regression testing

Cost-Aware Test Suite Minimization Approach Sugave, Patil, and Reddy

21

increases. It happens because as the software is modified, the new test cases
are added to test changed requirements. Software cost is reduced with an
improvement in regression testing process. Test-suite size problem is
addressed by two approaches namely test-suite reduction and test selection.
Test-suite reduction is also known as test set minimization algorithms [3]
which identify the minimized test suite that provides the same coverage of the
software as the original test-suite. In test-suite selection, a subset of the test
suite that will execute code or entity changes is selected by the test selection
algorithms. However, this test subset may not provide the same coverage as
the original test-suite [4, 5].

Generally test minimization problem have following testing perspectives (i)
Selection of testing criteria which need to be satisfied, and (ii) use of an
optimization technique to select/order the test cases on the basis of the
selected criteria. Some of the widely-used criteria are code coverage, program
modification, execution cost and past fault. The major goal of test suite
minimization problem [6-15] is the reduction of test suite size by deleting
redundant test cases with respect to some coverage criteria, such as code
coverage, branch coverage, data flow, dynamic program invariants or call
stacks. Coverage is a conventional approach that employs the greedy search
algorithm to decrease the number of test cases. A detailed explanation about
the coverage specifications and the similarity-dependent test suite reduction
schemes were presented in [16] and [17], respectively. The choice of a test
case in the test suite reduction algorithms can be made in relation to a
measure called contribution or goodness [18]. Test cases are assessed by a
metric called ratio in [19], [20]. EIrreplaceability is a recent metric that enables
decrementing the number of test cases through greedy search algorithm [2].
One of the problem in test suite minimization is the removal of some test
cases from the test suite may affect its ability to detect faults, since a smaller
test suite might have a lower effectiveness. Finding the minimal subset of a
test suite gives a NP-complete problem, as it can be reduced to the minimal
hitting set problem in polynomial time. Many Meta-heuristic approaches have
been applied to deal with this problem [21] to achieve good quality optimal
results.

 Accordingly, some different approaches have been studied in [22] to
maximize the value of the accrued test suite: minimization, selection, and
prioritization. The approaches presented in the literature for test suite
reduction are classified into four major types, i) Measure based test suite
reduction, ii) Greedy search-based test suite reduction, iii) Optimization-
Search based test suite reduction and iv) Multi-Objective-based test suite
reduction. In measure based test suite reduction, coverage-based variants are
widely applied as like [2, 3, 17, 18] for test suite reduction. The greedy search
based techniques are utilized the different criteria and constraints to find the
optimal test suite as like [6, 15]. In optimization based testing, genetic
algorithm, memetic algorithm, PSO algorithm is widely applied for test suite
reduction. The genetic algorithm-based test suite reduction can be found in [5,
19, 23, 24, 25]. The memetic algorithm based test suite reduction is discussed
in [11]. The main goal behind using meta-heuristic approaches is to explore
large search space to get best optimal solutions. Solutions to difficult
optimization problems are found by Meta-heuristic approach in a reasonable

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

22

amount of time [26]. Three weight-based Genetic Algorithms are described in
[25].

In this work, we bring an optimization algorithm called, TBAT (diversiTy BAT)
algorithm to select test cases optimally with the constraint that test suite
should satisfy all the test requirements. The constraints considered in the
work include: i) It should satisfy all the test requirements ii) Cost measure
should be minimum. Based on these two constraints, TBAT algorithm has
been developed by modifying the popular optimization algorithm called, BAT
algorithm [27] and TBAT refers to Test BAT that manages the diversity
constraints. At first, initial solutions are generated randomly with the constraint
that selected test cases in each and every solution should satisfy the entire
test requirement. Then, fitness is evaluated using the total cost which is the
aggregated execution time of all the selected test cases. The solution set
which has the minimum aggregated cost measure is then selected as the best
solution set. The generation of the new solution set and its evaluation is done
with the help of the proposed TBAT algorithm, where generated solution is
modified with the help of the new formula. The velocity equation in the
standard BAT algorithm is modified with the diversity constraints such that the
newly designed velocity formula promotes to handle the diversity problems.
Two weighed constants are introduced in the velocity formula, which promotes
to satisfy the constraints of the proposed TBAT.

The paper is organized as follows: Section 2 presents literature review and
the problem statement of the paper. Section 3 presents the proposed cost-
aware test suite minimization approach using TBAT optimization algorithm for
software testing. Section 4 presents the running example of existing and
proposed algorithm. Section 5 shows the experimental results. Section 6
concludes the paper.

2- MOTIVATION

2-1 RELATED WORKS

James A et al. [3] proposed two algorithms for test-suite reduction and
prioritization that employed the benefits of MC/DC effectively. The
prioritization techniques provide the ordered test suite that ensures fast
convergence to the MC/DC coverage of the original suite. This method
enables discovery of failures in the early stage itself. The main advantage is
that this algorithm overcame the complexities of MC/DC, which was a major
shortcoming of the existing methods. However, the time consumed is large.
The complexities in the reduction of the test suite were handled by Gregg
Rothermel and Mary Jean Harrold [4]. In [4], a new regression test selection
technique was proposed that developed a control flow graphs for a procedure
or program and its modified version. The role of the control flow graphs is that
the graphs select the tests executing the changed code of the original suite.
The main advantage is that this technique possesses the capacity to select
tests that are executing the new or modified statements and tests that
formerly executed statements that were deleted from the original program.
However, the method is not safe without the controlled regression testing. The
use of an evolutionary approach, called genetic algorithms, for test-suite
reduction is investigated in [5]. The algorithm builds the initial population

Cost-Aware Test Suite Minimization Approach Sugave, Patil, and Reddy

23

based on test history, calculates the fitness value using coverage and cost
information, and then selectively breeds the successive generations using
genetic operations. Moreover, Chu-Ti Lin et al. [2] developed a cost-aware
framework that is based on the concept of test irreplaceability by employing
the cost-aware test case metrics, called Irreplaceability and EIrreplaceability.
This method possesses the capacity to replace the individual test case by
other test cases during the test suite reduction. EIrreplaceability metric is
incorporated with the existing test case metric Ratio using the well-known test
suite reduction algorithms, such as Greedy, GRE, and HGS. This method
attains a low cost test reduction strategy to yield a high level of test coverage.
However, the efficiency was poor and the reduction algorithms used did not
satisfy the cost reduction capabilities. The effectiveness of a test suite
reduction process based on a combination of both concept analysis and
Genetic algorithm is examined by S. Selvakumar et al. in [23]. In [23], a
method for handling the tie between the groups in the lattice which will yield
most suitable cases for covering the requirements at that level was
suggested. Test case prioritization method based on genetic algorithm is
presented by Weixiang Zhang et al. in [24], whose representation, selection,
crossover and mutation were designed for black-box testing. DIV-GA
(Diversity based Genetic Algorithm) is based on the mechanisms of
orthogonal design and orthogonal evolution. It increases diversity by injecting
new orthogonal individuals during the search process of genetic algorithm for
test case selection introduced in [21] by Annibale Panichella et al. In multi-
objective-based test suite reduction, DIV-GA for Test Case Selection is
discussed in [21] which utilized the genetic algorithm to solve the multi-
objective problems. Reetika Nagar et al. proposed hybrid Particle Swarm
Optimization (PSO) algorithm for test suite reduction [26]. This method is
effective in choosing the minimum set of test cases that possess the
possibility of the faults and bugs for which it takes minimum time. Moreover,
the Regression testing techniques are effective for all the activity. However, it
is not suitable for large and complex problems or software. Martín
Pedemontea et al. [28] proposed a Systolic Genetic Search (SGS) algorithm
to solve the real-world problem like the Test Suite Minimization Problem
(TSMP) existing in the field of software engineering. It is advantageous over
the other methods with the high degree of parallelism. This algorithm serves
as a best method and it is highly effective method for the TSMP with the
excellent scalable behavior. But the SGS failed to reach the excellent quality
in the cost aware TSMP and the speed of convergence requires further
improvement.

2-2 PROBLEM STATEMENT AND CONTRIBUTIONS OF THE PAPER

Test suite reduction is an NP-hard problem because the test cases should be
reduced from the original set without compromising the test requirements for a
reduced cost. One of the algorithms presented recently is given in [2] where,
two metrics called; Irreplaceability and EIrreplaceability for test suite reduction
were introduced. The reduction of the test suite is done with those metrics and
greedy search algorithm which is one of the popular algorithms for the search
process. The greedy search algorithm requires more memory requirement to
select the test cases at every stage. The greedy search algorithm would pose
computational requirement of generating the representative set from the large
space. The searching of global optimum is tough to meet by the greedy
algorithm as it follows the problem solving by the heuristic approach of making

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

24

local optimum at every stage. Also, consideration of metrics to evaluate the
representative set needs to include multiple criteria and constraints to obtain
test cases without compromising the test requirement.

The objective of this research is to develop an effective test suite reduction
approach for regression testing using an optimization algorithm called BAT
algorithm [27]. This algorithm aims to overcome the challenges discussed
above and reduce the test suite optimally without compromising the test
requirements. The Bat algorithm has the advantage of providing the quick
convergence at a very initial stage by switching from exploration to
exploitation. Also, the solutions generated in every stage of the algorithm have
the feature of increasing the diversity of the solution which is much required
for test suite reduction.

The main contributions of the paper is given as follows,

• TBAT (Test BAT) algorithm is the newly proposed algorithm that reduces
the test suite size at desired optimum level. In this new algorithm,
movement of bats is modified with a new mathematical equation to handle
the diversity problem.

• A new objective function is proposed to evaluate the test suite reduced at
every stage of the proposed TBAT algorithm. This objective function
considers the new mathematical formula based on the constraint of
satisfying the entire test requirement.

3- PROPOSED COST-AWARE TEST SUITE MINIMIZATION
APPROACH USING TBAT OPTIMIZATION ALGORITHM FOR
SOFTWARE TESTING

This paper presents the proposed cost-aware test suite minimization
approach using TBAT algorithm for software testing. The input for the
proposed algorithm is test pool which contains a set of test cases and
requirements covered by the test cases. The proposed TBAT algorithm
reduces the size of the test pool by removing the redundant and non-
important test cases without compromising with the coverage. Along with this,
test cases should also ensure the minimum cost without much computational
complexity. In the proposed TBAT algorithm, initially solution set is
represented by test suites which are generated randomly and the optimal test
suite having the minimum cost is identified using the proposed neighbor
solution formula.

3-1 REPRESENTATION OF TEST POOL

The input for the proposed test case selection is test pool which contains the
test cases and its cost. A test case is a set of instructions which process input
variables required by the software to produce desired results and test case
requirement is a specific software function, loop or branch that is to be
executed for a test case. Here, the test case requirement is branch coverage
and the output provided specifies whether the given test case covers the
specific branch or not. Let us assume that the number of test case for the
algorithm is d and number of test requirement is m . Then, test pool can be

Cost-Aware Test Suite Minimization Approach Sugave, Patil, and Reddy

25

represented as, }0;0;{ mj di cP ij  . cij may be zero or one based on

the requirement satisfied by the test cases. Every value in P signifies whether
the corresponding test case can satisfy the corresponding test requirement.

The cost value of each test case ic is computed by finding the execution

time of the test case. So, the cost vector for all the test cases can be indicated
as, }0;{ di yC iT 

3-2 TEST SUITE REDUCTION PROBLEM WITH COST
MINIMIZATION

Test suite reduction gains remarkable significance in reducing the trade-off
between the time and cost required to execute, validate, and manage the test
suites. Moreover, developing a test is very expensive and hence, the
developed test suites should save to increase the reusability of the test suites
for the regression test of the software. The process of saving the test suites
give rise to the large sized suites that increases the cost of maintaining and
reusing those suites. Thus, test suite reduction is an important step in
regression testing and the main purpose is to reduce the cost associated with
regression testing. The test suite reduction is carried out in this paper that
satisfies two constraints, such as, i) satisfying all test requirements, ii)
Minimizing the cost value. Let RP be the selected test suite and x be the

number of test cases removed. Then, the test suite reduction problem with
cost minimization is formulated as the following objective,

 mjoxdkcP kjR  ;0:

Where, the following constraints should be satisfied,
i) mS  ;

ii) 01,

11

 




xd

k
kjj

m

j
j cifzwherezS

iii)



















xd

k
kyMin

1

The above equations state that the selected test suite should satisfy the entire
test requirements and cumulative cost selected test cases should be
minimum. ky is the cost value of the test case, kc . The test suite reduction

reduces the test case such the cost of executing, validating, and maintaining
the test suites for performing the regression test of the future releases of the
software is less. While removing the test cases, the test suites may undergo
some change such that the test requirement of the test suite changes. The
proposed method overcomes this drawback existing in the traditional
methods. Thus, the test suite obtained should meet all the requirements.
Moreover, it should meet the minimum cost constraint. The test suite
reduction process removes all the less important suites and minimizes the

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

26

size of the test suite without affecting the test requirement capabilities and the
objective function is framed accordingly to meet the above two constraints.

3-3 TBAT SEARCH ALGORITHM

The objective problem formulated in the above section for test suite reduction
is solved using the TBAT search algorithm. TBAT algorithm is newly proposed
here by extending the popular algorithm called, BAT algorithm [27] which is
developed based on echolocation behavior of bats. BAT algorithm is
effectively applied to various optimization problems due to the significance of
the speed convergence. In order to further improve the BAT algorithm for
diversity constraints, we developed a new neighbor solution formula based on
frequency and velocity.

Initialization: Let us assume that n bats are randomly initialized their positions
within the search space as,  pqppp bbbb ,,, 21  where p=1,2,...,n and q is the

dimension of the solution which signifies the number of test cases taken for
optimization. The variables such as, loudness A, pulse rate r, iteration t,

minimum frequency, maximum frequency maxQ and velocity t
iV are initialized.

Evaluation: Every bat is then evaluated with fitness function and the best one
having minimum fitness is stored as, bx

Movement of virtual bats: Every bat then updates its position using frequency
and velocity with the following equation. The equation utilized in BAT
algorithm is as follows,

   *minmaxmin QQQQi

 b
t
ii

t
i

t
i xxQvv   11

t
i

t
i

t
i vxx  1

Where,  is a random value which is used to update the frequency of the bat
using minQ and maxQ . It ranges between -1 to 1.The frequency iQ is then

utilized to update the velocity of the bats (t
iv) using the best position of the

bats bx . Then, the position of the bats is computed using the velocity and

position of the last iteration.

In the proposed TBAT algorithm, velocity formula is changed to adapting
diversity constraints. Since the application utilized here is test suite reduction,
it should have more diversity when generating new solution. Accordingly, the
above equation of velocity can be written as,

    ibb
t
ii

t
i

t
i QxUxxQvv **1  

From the above equation, we know that, the final part of the equation is newly
added to handle diversity problem. U is a unitary vector which is subtracted

Cost-Aware Test Suite Minimization Approach Sugave, Patil, and Reddy

27

from the best solution bx and multiplied with frequency value iQ . Then, the

second and third part of the equation are multiplied by weighted constants
 and . The new velocity is the utilized to find the position values of bats
using the following equation. The position values are then normalized to
binary value based on the bound constraints.

t
i

t
i

t
i vxy  1






















5.0;0

5.0;1

t
i

t
it

i
y

y
x

Loudness and pulse rate-based movement: In this step, random value  is
generated and if the random value is greater than the pulse rate, r new local
solution is generated based on the best solutions. Also, if the random value is
lesser than the loudness, A random solution is generated and the loudness
and pulse rate are updated only if this random solution is better than the best
solution.

Termination: The process above repeats until all the virtual bats have updated
their positions. Thus, one generation is finished. The iteration goes on until the
terminal requirement of t iteration is met. Then, the test suite with minimum
cost is considered as the optimal solution to the problem.

3-4 APPLYING TBAT SEARCH ALGORITHM FOR TEST SUITE
REDUCTION

a) Solution encoding

Solution encoding is an important step for any optimization algorithm to
search through space for optimizing the solution variables. Here, every
solution should replicate the selected test cases. So, position vector of bats
(solution) is represented as a vector which contains d number of elements.
Every element in the solution may be zeros or one. For example, if the
number of test cases is 7, the solution, pb is encoded as shown in figure 1.

Figure 1 means that the test cases selected through this solution encoding
procedure is 1, 3, 4 and 6. In TBAT algorithm, bat population is represented
as,  dqnpbB pq  0;0: . Here, n is the number of bats considered and

d is the dimension of the solution or number of test cases.

pb

1 0 1 1 0 1 0

Figure1 Solution representation of BAT algorithm

b) TBAT algorithm for test suite reduction
Based on the solution encoding procedure, bats are randomly initialized and
TBAT algorithm is applied. Figure 2 shows the TBAT search algorithm for test

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

28

case reduction. The solution with the minimum fitness is selected as the best
solution, which provides a set of selected test cases, and the remaining test
cases can be removed from the test pool to reduce the redundancy.

Fitness evaluation: The fitness of every bat (solution) is evaluated using the
fitness function,)(pbF . This function computes the total cost of the selected

test cases through the solution pb only if the selected test cases can satisfy

the entire test requirement. If not, infinity is assigned as fitness for the
solution. The solution is said to be the best one, only if the fitness value is
minimum. In order to accomplish this objective in the fitness function)(pbF ,

solution vector pb is directly multiplied with the cost vector and the

summation is taken if and only if S is equal to m . This means that the cost

value of the selected test case is only added if the solution vector has the
number zero or one based on the selection strategy. S is found out by adding
the parameter jz related to each and every test requirements of the selected

test cases. When the selected test cases satisfy the jth test requirement, jz is

equal to one. It means that if any test requirement is not satisfied by the
selected test cases, then the value of S is not equal to m .






















 



else

mSifyb
bF

d

q
qpq

p

;

;*
)(

1





m

j
jzS

1

0;1

1

 




xd

k
kjj cifz

Where, xd  is equal to number of ones in pb (Means that number of

selected test cases).

1 Algorithm: TBAT
2 Input: PTest pool
3 TC  Cost vector
4 Output:
5 bx  best solution (Selected test cases)
6 Begin
7 Initialize variables such as, A , r , t , minQ , maxQ ,  , 

 8 Initialize p=1 ,bat population pb and velocity t
iv

9 While p< t
10 Find fitness for pb using P and TC

Cost-Aware Test Suite Minimization Approach Sugave, Patil, and Reddy

29

11 Update velocity t
iv and frequency iQ

12 Update bats positions by t
ix

13 Store best solution bx
14 If( > r)
15 Generate local solution around best solution
16 Endif
17 If( < A)
18 Generate random solution, rx
19 Find fitness of rx using P and TC

 20 If(fitness(rx)<fitness(bx)
21 Update bx , r and A
22 Endif
23 Endif
24 p=p+1
25 Endwhile
26 Return bx
27 End

Figure 2 TBAT search algorithm for test suite reduction

4- RUNNING EXAMPLE AND COMPARISON

This section discusses a numerical example of greedy GreedyEIrreplaceability
algorithm [2], and proposed TBAT algorithm. Table 1 shows running example
of GreedyEIrreplaceability algorithm. The input has seven test cases and
seven test requirements. The cost of every test requirement is also given in
the table. In the first step, EIrreplaceability is computed for all the seven test
cases. For example, c1j covers two requirements such as, ci1 and ci2, where ci1
is covered by two test cases and ci2 is covered by two test cases. So, the
contribution is 1 (1/2+1/2) and cost value is 1 for c1j. EIrreplaceability is the
ratio of contribution to cost. So, EIrreplaceability for the test case c1j is 1. For
the test case c7j, ci7 is covered only by this test case so the value is assigned
to infinity. Similarly, EIrreplaceability can be found out for all other test cases.
After completing step 1, maximum value obtained by the test case is c7j which
is selected and test requirement ci7 which is satisfied by ci7 is removed from
the test pool. The same procedure is continued until all the requirements are
obtained. For this example, six steps are needed to obtain the entire test
requirement. Finally, selected test cases are (c1j, c2j, c3j, c4j, c5j, c7j) and
requirements solved are (ci1, ci2, ci3, ci4, ci5, ci6, ci7), The total cost required is
52 (1+2+5+11+23+10) which is obtained by doing the summation of all the
cost values of selected test cases.

Table 1 Running example of the GreedyEIrreplaceability algorithm

Step 1 ci1 ci2 ci3 ci4 ci5 ci6 ci7 Cost
(CT)

EIrreplaceability

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

30

 c1j 1 1 0 0 0 0 0 1 (1/2+1/2)/1=1
c2j 0 1 1 0 0 0 0 2 (1/2+1/2)/2=0.5
c3j 0 0 1 1 0 0 0 5 (1/2+1/2)/5= 0.2
c4j 0 0 0 1 1 0 0 11 (1/2+1/2)/11=0.09
c5j 0 0 0 0 1 1 0 23 (1/2+1/2)/23=0.043
c6j 1 0 0 0 0 1 0 40 (1/2+1/2)/40=0.025
c7j 0 0 0 0 0 0 1 10 ∞

Step 2 c1j 1 1 0 0 0 0 0 (1/2+1/2)/1=1
 c2j 0 1 1 0 0 0 0 (1/2+1/2)/2=0.5

c3j 0 0 1 1 0 0 0 (1/2+1/2)/5=0.2
c4j 0 0 0 1 1 0 0 (1/2+1/2)/11=0.09
c5j 0 0 0 0 1 1 0 (1/2+1/2)/23=0.043
c6j 1 0 0 0 0 1 0 (1/2+1/2)/40=0.025
c7j 0 0 0 0 0 0 - Selected

Step 3 c1j - - 0 0 0 0 0 Selected
 c2j 0 - 1 0 0 0 0 (1/2)/2=0.25

c3j 0 0 1 1 0 0 0 (1/2+1/2)/5= 0.2
c4j 0 0 0 1 1 0 0 (1/2+1/2)/11=0.09
c5j 0 0 0 0 1 1 0 (1/2+1/2)/23=0.043
c6j - 0 0 0 0 1 0 (1/2)/40=0.012
c7j 0 0 0 0 0 0 - Selected

Step 4 c1j - - 0 0 0 0 0 Selected
 c2j 0 - - 0 0 0 0 Selected

c3j 0 0 - 1 0 0 0 (1/2)/5=0.1
c4j 0 0 0 1 1 0 0 (1/2+1/2)/11=0.09
c5j 0 0 0 0 1 1 0 (1/2+1/2)/23=0.043
c6j - 0 0 0 0 1 0 (1/2)/40=0.012
c7j 0 0 0 0 0 0 - Selected

Step5 c1j - - 0 0 0 0 0 Selected
 c2j 0 - - 0 0 0 0 Selected

c3j 0 0 - - 0 0 0 Selected
c4j 0 0 0 - 1 0 0 (1/2)/11=0.045
c5j 0 0 0 0 1 1 0 (1/2+1/2)/23=0.043
c6j - 0 0 0 0 1 0 (1/2)/40=0.01
c7j 0 0 0 0 0 0 - Selected

Step 6 c1j - - 0 0 0 0 0 Selected
c2j 0 - - 0 0 0 0 Selected
c3j 0 0 - - 0 0 0 Selected
c4j 0 0 0 - - 0 0 Selected
c5j 0 0 0 0 - 1 0 (1/2)/23=0.021

(Selected)
c6j - 0 0 0 0 1 0 (1/2)/40=0.0125
c7j 0 0 0 0 0 0 - Selected

Selected test cases=(c1j , c2j , c3j , c4j , c5j , c7j); Requirements satisfied=(ci1, ci2, ci3, ci4, ci5, ci6,
ci7);
Total Cost=1+2+5+11+23+10=52

TBAT algorithm: The input for the TBAT algorithm is test pool P and cost
vector CT. Table 1 shows the inputs test pool P and cost vector CT of the
TBAT algorithm. The variables are initialized as, n =5, t =2; A =0.5, r =0.5,

minQ =0; maxQ =1; d =7. Table 3 shows the initialization of x, Q and v. The bat

population of x is generated randomly. Then, fitness for every solution of x is
computed based on the developed equation using cost vector CT. The
obtained values of fitness is as: Fitness(x(1))=  ; Fitness(x(2))=  ;
Fitness(x(3))=  ; Fitness(x(4))=  ; Fitness(x(5))=  . There is no solution

Cost-Aware Test Suite Minimization Approach Sugave, Patil, and Reddy

31

which satisfies the entire test requirement. So, x (1) is taken as best solution
and is given in Table 4 from initialization. In the first iteration, for  =-0.35,
 =0.8, =0.2, frequency, velocity and position values are updated which is
shown in Table 5. Then, fitness is computed for every solution of x:
Fitness(x(1))=  ; Fitness(x(2))=  ; Fitness(x(3))=  ; Fitness(x(4))=  ;
Fitness(x(5))=  . We obtained no solutions which satisfies the entire test
requirement. So, again, x (1) is taken as best solution and is given in Table 6
at the end of first iteration. In the second iteration, for  =0.35,  =0.8, =0.2,
frequency, velocity and position values are updated as shown in Table 7.
Then, fitness is computed for new solution of x values: Fitness(x(1))=  ;
Fitness(x(2))=47; Fitness(x(3))=  ; Fitness(x(4))=  ; Fitness(x(5))=  . At the
end of second iteration, the minimum fitness is obtained for x (2). So, we
selected x (2) as the best solution, shown in Table 8. After finishing two
iterations, the selected test cases through best solution are (c1j, c2j, c4j, c5j, and
c7j) and requirements solved are (ci1, ci2, ci3, ci4, ci5, ci6, ci7). The total cost
required is 47 (1+2+11+23+10) which is obtained by doing the summation of
all the cost values of selected test cases.

Table 2 Test pool P and cost vector CT

 ci1 ci2 ci3 ci4 ci5 ci6 ci7 Cost (CT)
c1j 1 1 0 0 0 0 0 1
c2j 0 1 1 0 0 0 0 2
c3j 0 0 1 1 0 0 0 5
c4j 0 0 0 1 1 0 0 11
c5j 0 0 0 0 1 1 0 23
c6j 1 0 0 0 0 1 0 40
c7j 0 0 0 0 0 0 1 10

Table 3 Initialization of x, Q and v

x 0 1 0 0 1 0 1

1 0 0 1 0 0 0
0 1 0 0 1 0 0
1 0 0 1 0 1 0
0 0 1 0 1 0 0

Q 1 1 1 1 1 1 1
v 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Table 4 Best solution from initialization

xb 0 1 0 0 1 0 1

Table 5 Updated value of x, y, Q and v after iteration 1

v 0.2 0.27 0.2 0.2 0.27 0.2 0.27

-0.01 0.48 0.2 -0.01 0.48 0.2 0.48
0.2 0.27 0.2 0.2 0.27 0.2 0.48

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

32

-0.01 0.48 0.2 -0.01 0.48 -0.01 0.48
0.2 0.48 -0.01 0.2 0.27 0.2 0.48

Q -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35
y 0.2 1.27 0.2 0.2 1.27 0.2 1.27

0.99 0.48 0.2 0.99 0.48 0.2 0.48
0.2 1.27 0.2 0.2 1.27 0.2 0.48
0.99 0.48 0.2 0.99 0.48 0.99 0.48
0.2 0.48 0.99 0.2 1.27 0.2 0.48

x 0 1 0 0 1 0 1
1 0 0 1 0 0 0
0 1 0 0 1 0 0
1 0 0 1 0 1 0
0 0 1 0 1 0 0

Table 6 Best solution after iteration 1

xb 0 1 0 0 1 0 1

Table 7 Updated value of x, Q and v after iteration 2

v 0.4 0.54 0.4 0.4 0.54 0.4 0.54

-0.02 0.96 0.4 -0.02 0.96 0.4 0.96
0.4 0.54 0.4 0.4 0.54 0.4 0.96
-0.02 0.96 0.4 -0.02 0.96 -0.02 0.96
0.4 0.96 -0.02 0.4 0.54 0.4 0.96

Q -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35
y 0.4 1.54 0.4 0.4 1.54 0.4 1.54

0.98 0.96 0.4 0.98 0.96 0.4 0.96
0.4 1.54 0.4 0.4 1.54 0.4 0.96
0.98 0.96 0.4 0.98 0.96 0.98 0.96
0.4 0.96 0.98 0.4 1.54 0.4 0.96

x 0 1 0 0 1 0 1
1 1 0 1 1 0 1
0 1 0 0 1 0 1
1 1 0 1 1 1 1
0 1 1 0 1 0 1

Table 8 Best solution after iteration 2

xb 1 1 0 1 1 0 1

5- RESULTS AND DISCUSSION

This section explains the subject programs taken for experimentation and
detailed performance evaluation of the proposed TBAT algorithm with existing
algorithm [2] using various evaluation metrics.

5-1 EXPERIMENTAL SETUP

a) Subject programs for evaluation

The proposed TBAT algorithm is experimented with five subject programs
taken from Software-artifact Infrastructure Repository (SIR) [9] which contains
Java, C, C++, and C# programs for experimentation with testing and analysis
techniques. From the repository, we have taken five different subject

Cost-Aware Test Suite Minimization Approach Sugave, Patil, and Reddy

33

programs such as, median, elevator, trityp, Apollo and pool3 which were
implemented in JAVA as our proposed algorithm has also been implemented
in JAVA. The detailed description of the subject programs are given in Table
9.

Table 9 Descriptions of the SIR subject programs and test suites

Programs
Size of test
pool

LOC
Number of test
requirements

Description

Median 185 37 6 A program used for median computation
Elevator 2900 580 15 A program for elevator system
Trityp 365 73 14 A program for classic triangle classification

Apollo 20545 4109 177

The Apollo Lunar Autopilot (Apollo) is a model
created by an engineer from the Apollo Lunar
Module Digital autopilot team and included in the
Java PathFinder distribution.

Pool3 10440 2088 198
The program provides robust pooling functionality for
keyed objects.

b) Evaluation metrics
The performance of the proposed TBAT and the existing algorithm is
evaluated using the following four evaluation metrics. SuiteCost is a metric to
compute the total execution time required for executing test suite.
SuiteCostreduction is a metric used to compute the percentage of reduction
capability of the algorithm versus the original computation time required for
the input test suite. Improvement (cost) is utilized to find the cost improvement
of the proposed algorithm while compared with the existing algorithm.
Improvement (%) is a percentage of improvement for the proposed algorithm
in test suite reduction as compared with the existing algorithm.





n

t

timeExecutionTTSuiteCost

1

)()(

%100*
)(

)()(
)(Re

TSuiteCost

RSSuiteCostTSuiteCost
SCRductionSuiteCost




)2()1()(algorithmCost algorithmCostcosttImprovemen 

%100*%)(

)1(
)2(cos)1(

 algorithmCost
 algorithmt algorithmCost

intImprovemen


c) Experimental steps
The proposed TBAT algorithm is implemented using Java 1.7 with NetBeans
IDE 7.3. The experimentation is conducted on Windows 7 machines with Intel
Core Duo processors and 2 GB of memory. At first, required no of test cases
are generated randomly through a synthetic program. Once we generate test
cases for a subject program through synthetic program, branch coverage and
cost is computed by applying test case to the corresponding subject program.
Here, branch coverage is computed for all the five subject programs by fixing
flag value in every branch. Through these steps, test pool is formed with a
value of branch coverage and cost for the required number of test cases. For
experimentation, we followed an experiential setup like the one described in
[27]. The comprehensive steps are described as follows: i) randomly generate
an integer w , LOCTw e *1 

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

34

2. Arbitrarily select w test cases from the test pool for each subject program,
and include those w test cases in test pool.

3. Ensure whether the test cases in test pool can satisfy all of the test
requirements. If not, arbitrarily select one more test case that can satisfy one
or more unsatisfied test requirements, and include the test case into Test
pool.

4. Repeat Step 3 until all test requirements are satisfied.

Once we follow the above steps, we obtain the final test pool which is given
for the algorithm to perform test suite reduction. For experimentation, we have
generated 1000 test suites for each program and the proposed TBAT
algorithm is performed for every test suites. Finally, the average performance
is taken for performance analysis.

5-2 PERFORMANCE EVALUATION

This section presents the performance analysis of the TBAT algorithm using
various parameters involved. The quantitative values obtained for TBAT
algorithm is the best case values obtained through the experimentation after
executing the proposed TBAT algorithm 100 times. Figure 3.a shows the
performance of TBAT using SCR for various numbers of bats. When a
number of bats are increased, the performance of the TBAT algorithm in
terms of SCR is also increased. When the number of the bats is increased
from 2, 4, 6, 8, and 10, the value of the TBAT using SCR is 40.08, 59.29,
61.04, 69.66, and 80.89 respectively. Similarly for the elevator programs, the
value of the TBAT using SCR is increased from 8.38E+1 to 95.57. Similarly,
for the trityp programs, the value of the TBAT using SCR is increased from
6.97E+01 to 93.75 when the number of bats increases from 2 to 10. Similarly,
for the programs Apollo and pool3, the value of the TBAT using SCR
increased from 83.12 to 98.95 and 99.5 to 99.79 respectively when the
number of bats increases. The highest performance achieved in median
programs is 80.89% and 95.5% in elevator program. The best average
performance in all the five programs is achieved when the numbers of bats
are fixed as 10.

Figure 3.b presents the SCR graph for various values of minimum frequency.
When the minimum frequency is increased from 0 to 0.4, the value of the
median program is found to decrease from 85.33 to 71.81. The value of the
TBAT using SCR for the elevator programs is 90.37, 92.69, 93.28, 94.64, and
92.99 when the minimum frequency value increases as 0, 0.1, 0.2, 0.3, and
0.4 respectively. Likewise, the value of the trityp programs using the proposed
TBAT and SCR is 9.66, 78.09, 87.22, 10.94, and 90.46 respectively with the
increasing minimum frequency value from 0 to 0.4. The best performance
achieved in trityp is 90.46% and 98.9% in Apollo program. For pool3, the
value of TBAT using SCR is increasing from 99.71, 99.80, 99.74, 97.73, and
99.729 respectively. However, the best value of the pool3 is attained when the
minimum frequency is 0.1. This graph shows that the average performance for
the value of Qmin as 0 is 76.1% and the best average performance of 89.8%
is achieved when the value of Qmin is fixed as 0.1.

Cost-Aware Test Suite Minimization Approach Sugave, Patil, and Reddy

35

Figure 4.a shows the performance of TBAT using SCR for various values of
maximum frequency. The maximum frequency is varied as 0.6, 0.7, 0.8, 0.9,
and 1 for all the programs like the median, elevator, trityp, Apollo, and pool3.
The value of the median program using the TBAT with the SCR reaches 84.34
from 91.31, elevator programs reaches 93.36 from 99.94, trityp attains 85.58
from 99.93, Apollo program attains 40.33 from 99.99, and pool3 attains 99.69
from 99.99. In this graph, the maximum performance in pool3 and apollo is
99.9%. From the graph, we know that the best average performance of 98.2%
is achieved when we fixed Qmax as 0.6. It is clearer that the value of the
programs like the median, elevator, trityp, Apollo, and pool3 attains a
maximum value of the average performance at minimum value of the
maximum frequency and the value reduces for the increasing value of the
maximum frequency.

From the figure 4.b, maximum performance of around 99% is achieved except
median program. Here, the best average performance of 97.8% is achieved
when we fixed pulse rate as 0.2. It is very clear from the graph that the SCR
value of the elevator, Apollo, median, and trityp decreases when the pulse
rate is increased but SCR value increases for pool3 with the increasing pulse
rate. The pulse rate used for analyzing the value of the SCR includes 0.2, 0.4,
0.6, 0.8, and 1 respectively. The value of the SCR reaches 62.51 from 88.33
for median program, 90.50 from 99.95 for the elevator program, 94.64 from
99.91 for the trityp program, 94.50 from 99.99 for the Apollo program, and
increases for pool3 from 99.73 to 99.78. However, the maximum performance
of SCR is noted for all the programs, namely median, elevator, trityp, and
Apollo when the pulse rate is 0.2. The program pool3 experiences the
maximum performance when the pulse rate is 1.

Figure 5.a shows the performance of TBAT using SCR for various values of
loudness. The value of loudness used for analysis is 0.2, 0.4, 0.6, 0.8, and 1
respectively. The SCR value of the median program when the loudness is 0.2
is 93.45, 76.84 for 0.4, 48.66 for 0.6, 27.27 for 0.8, and 70.33 for 1 as
loudness. The SCR value for the elevator program when the loudness is
increased from 0.2 to 1 is 99.94 to 94.77 respectively. The SCR values for the
trityp program when the loudness value is increased from 0.2 to 1 is
decreased from 99.91 to 91.86 and for the Apollo program, the SCR value is
decreased from 99.99 to 98.83 respectively. But the value of the pool3 is
increased from 98.22 to 99.68 with the increasing value of the loudness. The
maximum value of SCR achieved in median program is 93.45% while the
other four programs obtained the value of above 99%. Here, the best average
performance of 98.3% is achieved when the value of loudness is fixed as 0.2.

Figure 5.b shows the performance of TBAT using for a various number of
iterations. When iterations are increased, SCR is also increased. The value of
SCR for the programs median, elevator, trityp, Apollo, and pool3 is increased
from 72.36 to 96.56, 43 to 95.98, 71.48 to 92, 84.95 to 98.88, and 98.92 to
99.58 when the number of iterations increases from 5 to 25. However, the
maximum performance in terms of SCR is obtained when the value of
iterations are fixed as 25. After the performance evaluation, we found that
these values such as, n =10, t =25; A =1, r =0.2, minQ =0.1; maxQ =0.6 are

given the minimum cost after test case reduction. So, we fixed these values

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

36

for further comparative analysis with existing algorithm called,
GreedyEIrreplaceability.

(a) (b)

Figure 3 Performance of TBAT using SCR, a) for various numbers of bats b) for
various minimum frequency

(a) (b)
Figure 4 Performance of TBAT using SCR, a) for various maximum frequency b) for

various pulse rate

(a) (b)

Figure 5 Performance of TBAT using SCR, a) for various loudness b) for various
iterations

Cost-Aware Test Suite Minimization Approach Sugave, Patil, and Reddy

37

5-3 COMPARATIVE ANALYSIS

a) Analysis 1: Reduction capability of algorithms
Test pool is directly given to the algorithms, TBAT, Systolic Genetic Search
[28] and GreedyEIrreplaceability. The ultimate aim of both the algorithms is to
select test cases which should satisfy all the test requirements. Accordingly,
the test suite is reduced by both the algorithms and the cost for all the
selected test cases are computed and shown in Table 10 and 11 respectively.
Reduction capability of the algorithms is analyzed through the SCR and cost.
According to Table 10 for Te of 0.5, the proposed TBAT algorithm provides a
minimum cost for the four programs except for pool3. The total cost for the
proposed TBAT algorithm is 30.32 msec for median program as compared to
the value of 66.7 for the existing algorithm. Here, the systolic genetic search
obtained the 35.1 msec in the variance of 4 msec. Similarly, while comparing
with the original cost required for all the test pool, the proposed TBAT
achieved 89.2% improvement in the variance of 1% as compared with the
existing algorithm which improves only 76.2% in the variance of 5%. The
existing systolic genetic search obtained the SCR of 87.5% in the variance of
1%. We achieved 93.7% improvement in elevator program as compared with
90.69% improvement achieved by the existing algorithm. The proposed TBAT
obtained SCR values of 93.7%, 99.44%, and 99.5% for trityp, apollo and
pool3 programs as compared with the existing algorithm which obtained
90.64%, 91.05% and 99.6% for these three programs respectively. Here, the
systolic genetic search obtained the SCR values of 93.25%, 99.42% and
99.47% for trityp, apollo and pool3 programs. The range of variance for every
different random initialization is minimum for the proposed algorithm as
compared with other algorithms.

Table 11 describes the Reduction capability of algorithms (in msec) for input
Te of 0.75. From Table 11, the proposed TBAT obtained the cost of 19.5ms,
3.0E4ms, 1.7E4ms, 6.3E4, 4.61E8 for the five subject programs with the
variance of 2ms, 451 ms, 168 msec, 152 msec and 980 msec. In terms of
SCR, the proposed TBAT achieved the reduction improvement of 92.5%,
93.7%, 75.0%, 98.9% and 99.6% against the existing algorithm which reached
the improvement of 74.4%, 90.66%, 64.07%, 90.78% and 99.7%. The existing
systolic genetic search obtained the SCR of 89.24%, 90.62%, 64.5%, 98.72%
and 99.54% on the same set of programs. For the same analysis, the range of
variance shows a minimum for the proposed TBAT algorithm as compared
with the existing algorithms. Overall, the proposed algorithm proved that much
more reduction of test cases is possible as compared to the existing algorithm
except for pool3.

Table 10 Reduction capability of algorithms (in msec) for input threshold (eT) of 0.5

Progra
m

Original
TBAT-
Cost

GreedyEIrre
placeability-

Cost

Systolic
genetic-

Cost

TBAT-
SCR

Greedy
EIrrepla
ceabilit
y-SCR

Systolic
genetic-

SCR

Median 280.826 30.32  3 66.716  7 35.1  4 89.2  1
76.24

 5

87.50

 1

elevator 162156.3
10141.3

 210
15088.77 

256
12568 

451
93.74 

1

90.69

 0.7

92.24

 2

trityp 61145.42 3822.99 5721.18  7 4122  2 93.74  90.64 93.25

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

38

Table 11 Reduction capability of algorithms (in msec) for input threshold of 0.75

b) Analysis 2: Relative Reduction capability of algorithms

Table 12 provides Relative Reduction capability of algorithms for input
threshold of 0.5. Relative Reduction capability provides the improvement of
the proposed algorithm when compared with the existing algorithm. From
Table 12, the proposed TBAT achieved the cost improvement of 30.32,
10141.3, 3822.99, 40525.5, and 5.8E+08 for all the five subject programs in
the variance of 3, 210, 400, 550 and 1248. The percentage of improvement
for the proposed TBAT as compared with existing one is 54.5%, 32.78%,
33.17%, 93.76% and -55.07% in all the five programs in the variance of 2%,
2%, 4%, 0.2% and 12%. The percentage of improvement for the proposed
TBAT as compared with systolic genetic search is 15.76%, 23.92%, 7.82%,
2.56% and 5.17% in all the five programs in the variance of 5%, 1%, 4%, 1%
and 5%. Table 4 shows the Relative Reduction capability of algorithms for
input threshold of 0.75. The improvement is 70.6%, 33.33%, 30.45%, 88.36%
and -54.69% for median, elevator, trityp, Apollo and pool3 programs. For input
threshold of 0.75 shown in Table 13, the cost improvement is 47.12, 15018,
7580.4, 482987 and -1.6E8 for Median, elevator, trityp, Apollo, pool3
programs. The improvement percentage of the proposed TBAT algorithm with
respect to the systolic genetic search is 43.41%, 50.65%, 29.61%, 19.36%
and 26.08% in the variance of 4%, 4%, 8%, 7% and 5%. Overall, the
proposed algorithm proved that the relative reduction of test suite is improved
compared to existing algorithm except pool3.

Due to the binary solution coding of TBAT algorithm, the searching process
would convergence to a solution which is not an optimal one for pool3. The
binary solution coding can be represented with integer to obtain the more
suitable solution which can improve the performance of the TBAT algorithm in
pool3.

 400 45 54 2  0.5  1

Apollo 7262833
40525.5

 550

649642.95

 452

41563.2

 545
99.44 

0.5

91.05

 0.1

99.42

 0.2

Pool3
1.17E+1

1
5.8E+08

 1248

375181608

 5689

6.1E+08

 1350
99.50 

0.25

99.68

 0.3

99.47

 0.1

Program Original
TBAT-
Cost

GreedyEIrreplac
eability-Cost

Systolic
genetic-

Cost

TBAT
-SCR

GreedyEIrre
placeability-

SCR

Systolic
genetic-

SCR

Median 261.254 19.594 
2

66.716  5
28.1 

10

92.50

 1
74.46  5 89.24  2

elevator 482915.6
30045.1

 451
45063.40  459

45263.1

 154

93.77

 2
90.66  1 90.62  1

trityp 69273.73
17307.7

 168
24888.1  324

24589.5

 451

75.01

 5
64.07  1 64.50  3

Apollo 5930362
63581.4

 152
546568.61  99

6

75896.5

 658

98.92

 1
90.78  2 98.72  1

Pool3 1.28E+11
4.6E+08

 980
296598168  89

5

5.8E+08

 987

99.64

 0.
1

99.76  0.2 99.54  0.2

Cost-Aware Test Suite Minimization Approach Sugave, Patil, and Reddy

39

Table 12 Relative Reduction capability of algorithms for input threshold 0.5

Progr
am

TBAT-
Cost

GreedyEIrreplac
eability-Cost

Systolic
genetic-
Cost

Improvem
ent (cost)
(TBAT vs
GE)

Improve
ment
(cost)
(TBAT
vs
systolic
genetic)

Improve
ment
(%)(TBA
T vs GE)

Improve
ment
(%)(TBA
T vs
systolic
genetic)

Media
n 30.32  3 66.716  7 35.1  4 36.396  2 4.78  2

54.55 
2

15.76 
5

elevat
or

10141.3 
210

15088.77  256
12568  4
51

4950  58
9

2426.7

 22
32.78 
2

23.92 
1

trityp 3822.99 
400

5721.18  745
4122  25
4

1898.19 
547

299.01

 14
33.17 
4

7.82  4

Apollo 40525.5 
550

649642.95  452
41563.2 
545

609117 
789

1037.7

 11
93.76 
0.2

2.56  1

Pool3
5.8E+08

 1248
375181608  56
89

6.1E+08

 1350

-
2.1E+08

 7892

3E+07

 458

-

55.07 
12

5.17  5

Table 13 Relative Reduction capability of algorithms for input threshold 0.75

Prog
ram

TBAT-
Cost

Greedy-
EIrreplaceability-

Cost

Systolic
genetic-

Cost

Improve
ment
(cost)

(TBAT vs
GE)

Improve
ment
(cost)

(TBAT vs
systolic
genetic)

Improve
ment

(%)(TBA
T vs GE)

Improve
ment

(%)(TBA
T vs GE)

Medi
an

19.594

 2
66.716  5

28.1  1
0

47.1225

 2
8.506 

1
70.63 

1
43.41 

4

eleva
tor

30045.1

 451
45063.40  459

45263.1

 154
15018 

962
15218 

86
33.32 

2
50.65 

4

trityp
17307.7

 168
24888.1  324

24589.5

 451

7580.4

 856

7281.8

 58
30.45 

5
29.61 

8

Apoll
o

63581.4

 152
546568.61  996

75896.5

 658

482987

 796

12315.1

 789
88.36 

1
19.36 

7

Pool3
4.6E+08

 980
296598168  895

5.8E+08

 987

-
1.6E+08

 887

5.8E+08

 997

-

54.69 
2

26.08 
5

6- CONCLUSION

This paper presented a new optimization algorithm called, TBAT algorithm to
minimize the cost of regression testing. This new algorithm was developed to
handle the diversity problem in generating new movements of bats to reach
the optimal solution easily. The minimization function developed here to
improve the speed of convergence contains two constraints, satisfying the
entire test requirement and minimizing cost measure. In the proposed TBAT
algorithm, initial solutions are generated randomly and fitness is evaluated
using the proposed minimization function. The generation of the new solution
set is done by the proposed formula to reach the minimum cost function faster
than greedy-based algorithms. The experimental study is done with five
programs from SIR using four different evaluation metrics. The performance of
the proposed TBAT algorithm is extensively analyzed with different parametric
values to understand the best parameters of the proposed algorithm in test
suite reduction. The comparative analysis is performed with the existing

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

40

GreedyEIrreplaceability algorithm and the Systolic Genetic Search (SGS)
algorithm to show the performance improvement of the proposed algorithm.

REFERENCES

[1] J.Campos, R.Abreu, "Encoding Test Requirements as Constraints for
Test Suite Minimization", in Proceedings of 10th International
Conference on Information Technology: New Generations, 2013.

[2] C-T. Lin, K-W. Tang, G.M. Kapfhammer, "Test Suite reduction methods
that decrease regression testing costs by identifying irreplaceable tests",
Information and Software Technology, vol. 56, pp. 1322–1344, 2014.

[3] J.A. Jones and M.J. Harrold, Test-Suite Reduction and Prioritization for
Modified Condition/Decesion Coverage. IEEE Trans. On Software
Engineering, Vol. 29, no. 3, pp. 195-209, Mar. 2003.

[4] G. Rothermel and M.J. Harrold, A Safe, Efficient Regression Test
Selection Technique. ACM Trans. Software Eng. And Methods, vol. 6,
no. 2, pp. 173-210, Apr. 1997.

[5] X-y.Ma, B-k. Sheng, and C-G. Ye, "Test-Suite Reduction Using Genetic
Algorithm", LNCS 3756, pp. 253–262, 2005.

[6] S. Sampath, R. Bryce, and A. Memon, “A uniform representation of
hybrid criteria for regression testing,” Software Engineering, IEEE
Transactions on, vol. 39, no. 10, pp. 1326–1344, 2013

[7] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression
test case prioritization,” IEEE Transactions on Software Engineering, vol.
33, no. 4, pp. 225–237, 2007.

[8] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, “Adaptive Random
testing: The art of test case diversity,” J. Syst. Softw., vol. 83, no. 1, pp.
60–66, Jan. 2010.

[9] Software-artifact Infrastructure Repository (SIR),
http://sir.unl.edu/content/sir.php.

[10] Y.Wang, R.Gao, Z.Chen, W. E.Wong, B.Luo, "WAS: A weighted
attribute-based strategy for cluster test selection", Journal of Systems
and Software, Vol. 98, pp. 44–58, December 2014.

[11] G.Fraser, A.Arcuri, P.McMinn, "A Memetic Algorithm for whole test suite
generation ", Journal of Systems and Software, Vol. 103, pp. 311–327,
May 2015.

[12] S.Sampath, R.C. Bryce, "Improving the effectiveness of test suite
reduction for user-session-based testing of web applications",
Information and Software Technology, Vol. 54, no. 7, pp. 724–738, July
2012.

Cost-Aware Test Suite Minimization Approach Sugave, Patil, and Reddy

41

[13] J-W. Lin, C-Y. Huang, "Analysis of test suite reduction with enhanced tie-
breaking techniques", Information and Software Technology, Vol. 51, no.
4, pp. 679–690, April 2009.

[14] I. Rodriguez, L.Llana, P.Rabanal, "A General Testability Theory:
Classes, Properties, Complexity, and Testing Reductions", IEEE
Transactions on Software Engineering, Vol. 40, no. 9, pp. 862 - 894,
June 2014.

[15] M. Cohen, M. Dwyer, and J. Shi, “Constructing interaction test suites for
highly-configurable systems in the presence of constraints: A greedy
approach,” Software Engineering, IEEE Transactions on, vol. 34, pp.
633–650, 2008.

[16] H. Hemmati, A Arcuri, and L. Briand, "Achieving Scalable Model-Based
Testing Through Test Case Diversity", ACM Transactions on Software
Engineering and Methodology (TOSEM), Vol. 22, no. 1, February 2013.

[17] E.Shaccour, F.Zaraket, and W.Masri, "Coverage Specification for Test
Case Intent Preservation in Regression Suites", in Proceedings of IEEE
Sixth International Conference on Software Testing, Verification and
Validation Workshops, 2013.

[18] J.A. Jones, M.J. Harrold, “Test-suite reduction and prioritization for
modified condition/decision coverage”, IEEE Transaction on Software
Engineering, vol. 29, no. 3, pp. 195–200, 2003.

[19] X.Y. Ma, Z.F. He, B.K. Sheng, C.Q. Ye, “A genetic algorithm for test-suite
reduction”, in: Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, IEEE, pp. 133–139, October 2005.

[20] A.M. Smith, G.M. Kapfhammer, “An empirical study of incorporating cost
into test suite reduction and prioritization”, in: Proceedings of the 24th
ACM Symposium on Applied Computing, Software Engineering Track,
ACM, pp. 461–467, March 2009.

[21] A.Panichella, R.Oliveto, M.D. Penta, A.D. Lucia,"Improving Multi-
Objective Test Case Selection by Injecting Diversity in Genetic
Algorithms", IEEE Transactions on Software Engineering, Vol. 41, no. 4,
pp. 358 - 383, 2015.

[22] S. Yoo, M. Harman, "Regression testing minimization, selection and
prioritization: a survey", Journal Software Testing, Verification &
Reliability, Vol. 22, no. 2, pp. 67-120, March 2012.

[23] S. Selvakumar, M.R.C. Dinesh, C. Dhineshkumar, and N.Ramaraj,
"Reducing the Size of the Test Suite by Genetic Algorithm and Concept
Analysis", CCIS 90, pp. 153–161, 2010.

[24] W.Zhang, B.Wei, and H.Du, "Test Case Prioritization Based on Genetic
Algorithm and Test-Points Coverage", LNCS 8630, pp. 644–654, 2014.

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

42

[25] S.Wang, S.Ali, A.Gotlieb, "Cost-effective test suite minimization in
product lines using search techniques", The Journal of Systems and
Software, pp. 1–22, 2014.

[26] R.Nagar, A.Kumar, S.Kumar, A.S.Baghel, "Implementing Test Case
Selection and Reduction Techniques using Meta-Heuristics", in
Proceedings of 2014 5th International Conference -Confluence The Next
Generation Information Technology Summit (Confluence), pp. 837-842,
2014.

[27] X. S. Yang, A New Metaheuristic Bat-Inspired Algorithm, in: Nature
Inspired Cooperative Strategies for Optimization (NISCO 2010) (Eds. J.
R. Gonzalez et al.), Studies in Computational Intelligence, Springer
Berlin, 284, Springer, pp. 65-74, 2010.

[28] M.Pedemonte, F.Luna, E.Alba, "A Systolic Genetic Search for reducing
the execution cost of regression testing", Applied Soft Computing, Vol.
49, pp. 1145–1161, December 2016.

Cost-Aware Test Suite Minimization Approach Sugave, Patil, and Reddy

43

