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ABSTRACT 

Traditional way of optimizing regression testing cost is to reduce subsets of 
test cases from a test suite without compromising the test requirement. In 
order to reduce the test suite, researchers have presented various test-suite 
reduction techniques using coverage metrics and greedy search algorithms. 
Besides greedy algorithms, optimization-based algorithms have played a 
major role in test suite reduction. Accordingly, we developed a new 
optimization algorithm called, TBAT algorithm to handle the diversity problem 
in generating new solutions while finding the optimal test cases. Here, a 
fitness function is developed to select the test cases optimally through the 
TBAT algorithm using two constraints, satisfying the entire test requirement 
and minimizing the cost measure. The proposed TBAT algorithm is 
experimented with five programs from SIR using four different evaluation 
metrics. The empirical study on the performance of the TBAT algorithm is 
analyzed with various parameters and the comparison is done with the 
greedy–based algorithm and the Systolic Genetic Search (SGS) algorithm. 
The experimental outcome showed that the proposed TBAT algorithm 
outperformed the existing algorithm in reaching the minimal cost 
requirements. 

Keywords: BAT algorithm, Optimization, Test case, Test suite, Test suite 
minimization. 
 

1- INTRODUCTION 

Many crucial applications such as banking, medical instrumentation, 
commercial avionics, nuclear power, etc. require high integrity software. 
These software applications are subjected to extremely intricate verification 
and validation procedures which involve some different tasks [1]. One of the 
validation procedure which helps in improving the quality of the software is 
software testing. Software testing is the most important method which 
guarantees the quality of the developing software. Recently, many 
researchers are focussing on regression testing [2]. Regression testing is the 
most often used maintenance process which revalidates the modified 
software. As the size of the test suite grows, the cost of regression testing 
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increases. It happens because as the software is modified, the new test cases 
are added to test changed requirements. Software cost is reduced with an 
improvement in regression testing process. Test-suite size problem is 
addressed by two approaches namely test-suite reduction and test selection. 
Test-suite reduction is also known as test set minimization algorithms [3] 
which identify the minimized test suite that provides the same coverage of the 
software as the original test-suite. In test-suite selection, a subset of the test 
suite that will execute code or entity changes is selected by the test selection 
algorithms. However, this test subset may not provide the same coverage as 
the original test-suite [4, 5].  

Generally test minimization problem have following testing perspectives (i) 
Selection of testing criteria which need to be satisfied, and (ii) use of an 
optimization technique to select/order the test cases on the basis of the 
selected criteria. Some of the widely-used criteria are code coverage, program 
modification, execution cost and past fault. The major goal of test suite 
minimization problem [6-15] is the reduction of test suite size by deleting 
redundant test cases with respect to some coverage criteria, such as code 
coverage, branch coverage, data flow, dynamic program invariants or call 
stacks. Coverage is a conventional approach that employs the greedy search 
algorithm to decrease the number of test cases. A detailed explanation about 
the coverage specifications and the similarity-dependent test suite reduction 
schemes were presented in [16] and [17], respectively. The choice of a test 
case in the test suite reduction algorithms can be made in relation to a 
measure called contribution or goodness [18]. Test cases are assessed by a 
metric called ratio in [19], [20]. EIrreplaceability is a recent metric that enables 
decrementing the number of test cases through greedy search algorithm [2]. 
One of the problem in test suite minimization is the removal of some test 
cases from the test suite may affect its ability to detect faults, since a smaller 
test suite might have a lower effectiveness. Finding the minimal subset of a 
test suite gives a NP-complete problem, as it can be reduced to the minimal 
hitting set problem in polynomial time.  Many Meta-heuristic approaches have 
been applied to deal with this problem [21] to achieve good quality optimal 
results.  

 Accordingly, some different approaches have been studied in [22] to 
maximize the value of the accrued test suite: minimization, selection, and 
prioritization. The approaches presented in the literature for test suite 
reduction are classified into four major types, i) Measure based test suite 
reduction, ii) Greedy search-based test suite reduction, iii) Optimization- 
Search based test suite reduction and iv) Multi-Objective-based test suite 
reduction. In measure based test suite reduction, coverage-based variants are 
widely applied as like [2, 3, 17, 18] for test suite reduction. The greedy search 
based techniques are utilized the different criteria and constraints to find the 
optimal test suite as like [6, 15]. In optimization based testing, genetic 
algorithm, memetic algorithm, PSO algorithm is widely applied for test suite 
reduction. The genetic algorithm-based test suite reduction can be found in [5, 
19, 23, 24, 25]. The memetic algorithm based test suite reduction is discussed 
in [11]. The main goal behind using meta-heuristic approaches is to explore 
large search space to get best optimal solutions. Solutions to difficult 
optimization problems are found by Meta-heuristic approach in a reasonable 
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amount of time [26]. Three weight-based Genetic Algorithms are described in 
[25].  

In this work, we bring an optimization algorithm called, TBAT (diversiTy BAT) 
algorithm to select test cases optimally with the constraint that test suite 
should satisfy all the test requirements. The constraints considered in the 
work include: i) It should satisfy all the test requirements ii) Cost measure 
should be minimum. Based on these two constraints, TBAT algorithm has 
been developed by modifying the popular optimization algorithm called, BAT 
algorithm [27] and TBAT refers to Test BAT that manages the diversity 
constraints. At first, initial solutions are generated randomly with the constraint 
that selected test cases in each and every solution should satisfy the entire 
test requirement. Then, fitness is evaluated using the total cost which is the 
aggregated execution time of all the selected test cases. The solution set 
which has the minimum aggregated cost measure is then selected as the best 
solution set. The generation of the new solution set and its evaluation is done 
with the help of the proposed TBAT algorithm, where generated solution is 
modified with the help of the new formula. The velocity equation in the 
standard BAT algorithm is modified with the diversity constraints such that the 
newly designed velocity formula promotes to handle the diversity problems. 
Two weighed constants are introduced in the velocity formula, which promotes 
to satisfy the constraints of the proposed TBAT.  

The paper is organized as follows: Section 2 presents literature review and 
the problem statement of the paper. Section 3 presents the proposed cost-
aware test suite minimization approach using TBAT optimization algorithm for 
software testing. Section 4 presents the running example of existing and 
proposed algorithm. Section 5 shows the experimental results. Section 6 
concludes the paper.  

2- MOTIVATION 

2-1 RELATED WORKS 

James A et al. [3] proposed two algorithms for test-suite reduction and 
prioritization that employed the benefits of MC/DC effectively. The 
prioritization techniques provide the ordered test suite that ensures fast 
convergence to the MC/DC coverage of the original suite. This method 
enables discovery of failures in the early stage itself. The main advantage is 
that this algorithm overcame the complexities of MC/DC, which was a major 
shortcoming of the existing methods. However, the time consumed is large. 
The complexities in the reduction of the test suite were handled by Gregg 
Rothermel and Mary Jean Harrold [4]. In [4], a new regression test selection 
technique was proposed that developed a control flow graphs for a procedure 
or program and its modified version. The role of the control flow graphs is that 
the graphs select the tests executing the changed code of the original suite. 
The main advantage is that this technique possesses the capacity to select 
tests that are executing the new or modified statements and tests that 
formerly executed statements that were deleted from the original program. 
However, the method is not safe without the controlled regression testing. The 
use of an evolutionary approach, called genetic algorithms, for test-suite 
reduction is investigated in [5]. The algorithm builds the initial population 
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based on test history, calculates the fitness value using coverage and cost 
information, and then selectively breeds the successive generations using 
genetic operations. Moreover, Chu-Ti Lin et al. [2] developed a cost-aware 
framework that is based on the concept of test irreplaceability by employing 
the cost-aware test case metrics, called Irreplaceability and EIrreplaceability. 
This method possesses the capacity to replace the individual test case by 
other test cases during the test suite reduction. EIrreplaceability metric is 
incorporated with the existing test case metric Ratio using the well-known test 
suite reduction algorithms, such as Greedy, GRE, and HGS. This method 
attains a low cost test reduction strategy to yield a high level of test coverage. 
However, the efficiency was poor and the reduction algorithms used did not 
satisfy the cost reduction capabilities. The effectiveness of a test suite 
reduction process based on a combination of both concept analysis and 
Genetic algorithm is examined by S. Selvakumar et al. in [23]. In [23], a 
method for handling the tie between the groups in the lattice which will yield 
most suitable cases for covering the requirements at that level was 
suggested. Test case prioritization method based on genetic algorithm is 
presented by Weixiang Zhang et al. in [24], whose representation, selection, 
crossover and mutation were designed for black-box testing. DIV-GA 
(Diversity based Genetic Algorithm) is based on the mechanisms of 
orthogonal design and orthogonal evolution. It increases diversity by injecting 
new orthogonal individuals during the search process of genetic algorithm for 
test case selection introduced in [21] by Annibale Panichella et al. In multi-
objective-based test suite reduction, DIV-GA for Test Case Selection is 
discussed in [21] which utilized the genetic algorithm to solve the multi-
objective problems. Reetika Nagar et al. proposed hybrid Particle Swarm 
Optimization (PSO) algorithm for test suite reduction [26]. This method is 
effective in choosing the minimum set of test cases that possess the 
possibility of the faults and bugs for which it takes minimum time. Moreover, 
the Regression testing techniques are effective for all the activity. However, it 
is not suitable for large and complex problems or software. Martín 
Pedemontea et al. [28] proposed a Systolic Genetic Search (SGS) algorithm 
to solve the real-world problem like the Test Suite Minimization Problem 
(TSMP) existing in the field of software engineering. It is advantageous over 
the other methods with the high degree of parallelism. This algorithm serves 
as a best method and it is highly effective method for the TSMP with the 
excellent scalable behavior. But the SGS failed to reach the excellent quality 
in the cost aware TSMP and the speed of convergence requires further 
improvement. 

2-2 PROBLEM STATEMENT AND CONTRIBUTIONS OF THE PAPER 

Test suite reduction is an NP-hard problem because the test cases should be 
reduced from the original set without compromising the test requirements for a 
reduced cost. One of the algorithms presented recently is given in [2] where, 
two metrics called; Irreplaceability and EIrreplaceability for test suite reduction 
were introduced. The reduction of the test suite is done with those metrics and 
greedy search algorithm which is one of the popular algorithms for the search 
process. The greedy search algorithm requires more memory requirement to 
select the test cases at every stage. The greedy search algorithm would pose 
computational requirement of generating the representative set from the large 
space. The searching of global optimum is tough to meet by the greedy 
algorithm as it follows the problem solving by the heuristic approach of making 
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local optimum at every stage. Also, consideration of metrics to evaluate the 
representative set needs to include multiple criteria and constraints to obtain 
test cases without compromising the test requirement.  

The objective of this research is to develop an effective test suite reduction 
approach for regression testing using an optimization algorithm called BAT 
algorithm [27]. This algorithm aims to overcome the challenges discussed 
above and reduce the test suite optimally without compromising the test 
requirements. The Bat algorithm has the advantage of providing the quick 
convergence at a very initial stage by switching from exploration to 
exploitation. Also, the solutions generated in every stage of the algorithm have 
the feature of increasing the diversity of the solution which is much required 
for test suite reduction.  

The main contributions of the paper is given as follows, 

• TBAT (Test BAT) algorithm is the newly proposed algorithm that reduces 
the test suite size at desired optimum level. In this new algorithm, 
movement of bats is modified with a new mathematical equation to handle 
the diversity problem. 

• A new objective function is proposed to evaluate the test suite reduced at 
every stage of the proposed TBAT algorithm. This objective function 
considers the new mathematical formula based on the constraint of 
satisfying the entire test requirement. 

3- PROPOSED COST-AWARE TEST SUITE MINIMIZATION 
APPROACH USING TBAT OPTIMIZATION ALGORITHM FOR 
SOFTWARE TESTING 

This paper presents the proposed cost-aware test suite minimization 
approach using TBAT algorithm for software testing. The input for the 
proposed algorithm is test pool which contains a set of test cases and 
requirements covered by the test cases. The proposed TBAT algorithm 
reduces the size of the test pool by removing the redundant and non-
important test cases without compromising with the coverage. Along with this, 
test cases should also ensure the minimum cost without much computational 
complexity. In the proposed TBAT algorithm, initially solution set is 
represented by test suites which are generated randomly and the optimal test 
suite having the minimum cost is identified using the proposed neighbor 
solution formula.  

3-1 REPRESENTATION OF TEST POOL 

The input for the proposed test case selection is test pool which contains the 
test cases and its cost. A test case is a set of instructions which process input 
variables required by the software to produce desired results and test case 
requirement is a specific software function, loop or branch that is to be 
executed for a test case. Here, the test case requirement is branch coverage 
and the output provided specifies whether the given test case covers the 
specific branch or not. Let us assume that the number of test case for the 
algorithm is d  and number of test requirement is m . Then, test pool can be 
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represented as, }0;0;{ mj    di   cP ij  .  cij may be zero or one based on 

the requirement satisfied by the test cases. Every value in P signifies whether 
the corresponding test case can satisfy the corresponding test requirement. 

The cost value of each test case  ic  is computed by finding the execution 

time of the test case. So, the cost vector for all the test cases can be indicated 
as,  }0;{   di      yC iT   

3-2 TEST SUITE REDUCTION PROBLEM WITH COST 
MINIMIZATION 

Test suite reduction gains remarkable significance in reducing the trade-off 
between the time and cost required to execute, validate, and manage the test 
suites. Moreover, developing a test is very expensive and hence, the 
developed test suites should save to increase the reusability of the test suites 
for the regression test of the software. The process of saving the test suites 
give rise to the large sized suites that increases the cost of maintaining and 
reusing those suites. Thus, test suite reduction is an important step in 
regression testing and the main purpose is to reduce the cost associated with 
regression testing. The test suite reduction is carried out in this paper that 
satisfies two constraints, such as, i) satisfying all test requirements, ii) 
Minimizing the cost value. Let   RP  be the selected test suite and x  be the 

number of test cases removed. Then, the test suite reduction problem with 
cost minimization is formulated as the following objective, 

 mjoxdkcP kjR  ;0:  

Where, the following constraints should be satisfied, 
i) mS      ;     
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The above equations state that the selected test suite should satisfy the entire 
test requirements and cumulative cost selected test cases should be 
minimum. ky  is the cost value of the test case,  kc . The test suite reduction 

reduces the test case such the cost of executing, validating, and maintaining 
the test suites for performing the regression test of the future releases of the 
software is less. While removing the test cases, the test suites may undergo 
some change such that the test requirement of the test suite changes. The 
proposed method overcomes this drawback existing in the traditional 
methods. Thus, the test suite obtained should meet all the requirements. 
Moreover, it should meet the minimum cost constraint. The test suite 
reduction process removes all the less important suites and minimizes the 
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size of the test suite without affecting the test requirement capabilities and the 
objective function is framed accordingly to meet the above two constraints.

 

3-3 TBAT SEARCH ALGORITHM  

The objective problem formulated in the above section for test suite reduction 
is solved using the TBAT search algorithm. TBAT algorithm is newly proposed 
here by extending the popular algorithm called, BAT algorithm [27] which is 
developed based on echolocation behavior of bats. BAT algorithm is 
effectively applied to various optimization problems due to the significance of 
the speed convergence. In order to further improve the BAT algorithm for 
diversity constraints, we developed a new neighbor solution formula based on 
frequency and velocity.  

Initialization:  Let us assume that n bats are randomly initialized their positions 
within the search space as,  pqppp bbbb ,,, 21  where p=1,2,...,n and q is the 

dimension of the solution which signifies the number of test cases taken for 
optimization. The variables such as, loudness A, pulse rate r, iteration t, 

minimum frequency, maximum frequency maxQ  and velocity t
iV  are initialized.  

Evaluation: Every bat is then evaluated with fitness function and the best one 
having minimum fitness is stored as, bx   

Movement of virtual bats: Every bat then updates its position using frequency 
and velocity with the following equation. The equation utilized in BAT 
algorithm is as follows, 

   *minmaxmin QQQQi   

 b
t
ii

t
i

t
i xxQvv   11  

t
i

t
i

t
i vxx  1  

Where,   is a random value which is used to update the frequency of the bat 
using  minQ  and maxQ . It ranges between -1 to 1.The frequency iQ  is then 

utilized to update the velocity of the bats ( t
iv ) using the best position of the 

bats bx . Then, the position of the bats is computed using the velocity and 

position of the last iteration.  

In the proposed TBAT algorithm, velocity formula is changed to adapting 
diversity constraints. Since the application utilized here is test suite reduction, 
it should have more diversity when generating new solution. Accordingly, the 
above equation of velocity can be written as, 

    ibb
t
ii

t
i

t
i QxUxxQvv **1    

From the above equation, we know that, the final part of the equation is newly 
added to handle diversity problem. U is a unitary vector which is subtracted 
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from the best solution bx and multiplied with frequency value iQ . Then, the 

second and third part of the equation are multiplied by weighted constants 
 and . The new velocity is the utilized to find the position values of bats 
using the following equation. The position values are then normalized to 
binary value based on the bound constraints. 

t
i

t
i

t
i vxy  1  






















5.0;0

5.0;1

t
i

t
it

i
y

y
x  

Loudness and pulse rate-based movement: In this step, random value   is 
generated and if the random value is greater than the pulse rate, r  new local 
solution is generated based on the best solutions. Also, if the random value is 
lesser than the loudness, A  random solution is generated and the loudness 
and pulse rate are updated only if this random solution is better than the best 
solution. 

Termination: The process above repeats until all the virtual bats have updated 
their positions. Thus, one generation is finished. The iteration goes on until the 
terminal requirement of t  iteration is met. Then, the test suite with minimum 
cost is considered as the optimal solution to the problem. 

3-4 APPLYING TBAT SEARCH ALGORITHM FOR TEST SUITE 
REDUCTION 

a) Solution encoding 

Solution encoding is an important step for any optimization algorithm to 
search through space for optimizing the solution variables. Here, every 
solution should replicate the selected test cases. So, position vector of bats 
(solution) is represented as a vector which contains d number of elements. 
Every element in the solution may be zeros or one. For example, if the 
number of test cases is 7, the solution, pb  is encoded as shown in figure 1. 

Figure 1 means that the test cases selected through this solution encoding 
procedure is 1, 3, 4 and 6. In TBAT algorithm, bat population is represented 
as,  dqnpbB pq  0;0: . Here, n is the number of bats considered and 

d is the dimension of the solution or number of test cases. 

pb  

1 0 1 1 0 1 0 
 

Figure1 Solution representation of BAT algorithm 
 

b) TBAT algorithm for test suite reduction 
Based on the solution encoding procedure, bats are randomly initialized and 
TBAT algorithm is applied. Figure 2 shows the TBAT search algorithm for test 
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case reduction. The solution with the minimum fitness is selected as the best 
solution, which provides a set of selected test cases, and the remaining test 
cases can be removed from the test pool to reduce the redundancy.  

Fitness evaluation: The fitness of every bat (solution) is evaluated using the 
fitness function, )( pbF . This function computes the total cost of the selected 

test cases through the solution pb  only if the selected test cases can satisfy 

the entire test requirement. If not, infinity is assigned as fitness for the 
solution. The solution is said to be the best one, only if the fitness value is 
minimum. In order to accomplish this objective in the fitness function )( pbF , 

solution vector pb  is directly multiplied with the cost vector and the 

summation is taken if and only if S is equal to m . This means that the cost 

value of the selected test case is only added if the solution vector has the 
number zero or one based on the selection strategy. S is found out by adding 
the parameter jz related to each and every test requirements of the selected 

test cases. When the selected test cases satisfy the jth test requirement, jz  is 

equal to one. It means that if any test requirement is not satisfied by the 
selected test cases, then the value of S is not equal to m . 
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xd
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Where, xd   is equal to number of ones in pb (Means that number of 

selected test cases). 

1 Algorithm: TBAT 
2 Input:  PTest pool 
3       TC  Cost vector 
4 Output: 
5               bx  best solution (Selected test cases)  
6 Begin 
7            Initialize variables such as, A , r , t , minQ , maxQ ,  ,   

    8      Initialize p=1 ,bat population pb and velocity t
iv  

9            While p< t  
10                   Find fitness for pb using P  and TC  
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11                   Update velocity t
iv  and frequency  iQ  

12                   Update bats positions by t
ix   

13                   Store best solution bx  
14                   If(  > r ) 
15                          Generate local solution around best solution 
16                   Endif 
17                   If(  < A ) 
18                         Generate random solution, rx  
19                         Find fitness of rx  using P  and TC   

  20                   If(fitness( rx )<fitness( bx ) 
21                              Update bx , r  and A  
22                         Endif 
23                   Endif 
24 p=p+1     
25 Endwhile 
26     Return bx  
27 End 

 
Figure 2 TBAT search algorithm for test suite reduction 

 

4- RUNNING EXAMPLE AND COMPARISON 

This section discusses a numerical example of greedy GreedyEIrreplaceability 
algorithm [2], and proposed TBAT algorithm. Table 1 shows running example 
of GreedyEIrreplaceability algorithm. The input has seven test cases and 
seven test requirements. The cost of every test requirement is also given in 
the table. In the first step, EIrreplaceability is computed for all the seven test 
cases. For example, c1j covers two requirements such as, ci1 and ci2, where ci1 
is covered by two test cases and ci2 is covered by two test cases. So, the 
contribution is 1 (1/2+1/2) and cost value is 1 for c1j. EIrreplaceability is the 
ratio of contribution to cost. So, EIrreplaceability for the test case c1j is 1. For 
the test case c7j, ci7 is covered only by this test case so the value is assigned 
to infinity. Similarly, EIrreplaceability can be found out for all other test cases. 
After completing step 1, maximum value obtained by the test case is c7j which 
is selected and test requirement ci7 which is satisfied by ci7 is removed from 
the test pool. The same procedure is continued until all the requirements are 
obtained. For this example, six steps are needed to obtain the entire test 
requirement. Finally, selected test cases are ( c1j, c2j, c3j, c4j, c5j, c7j ) and 
requirements solved are (ci1, ci2, ci3, ci4, ci5, ci6, ci7), The total cost required is 
52 (1+2+5+11+23+10) which is obtained by doing the summation of all the 
cost values of selected test cases. 

Table 1 Running example of the GreedyEIrreplaceability algorithm 
 

Step 1  ci1 ci2 ci3 ci4 ci5 ci6 ci7 Cost 
(CT) 

EIrreplaceability 
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 c1j 1 1 0 0 0 0 0 1 (1/2+1/2)/1=1 
c2j 0 1 1 0 0 0 0 2 (1/2+1/2)/2=0.5 
c3j 0 0 1 1 0 0 0 5 (1/2+1/2)/5= 0.2 
c4j 0 0 0 1 1 0 0 11 (1/2+1/2)/11=0.09 
c5j 0 0 0 0 1 1 0 23 (1/2+1/2)/23=0.043 
c6j 1 0 0 0 0 1 0 40 (1/2+1/2)/40=0.025 
c7j 0 0 0 0 0 0 1 10 ∞ 

Step 2 c1j 1 1 0 0 0 0 0  (1/2+1/2)/1=1 
 c2j 0 1 1 0 0 0 0   (1/2+1/2)/2=0.5 

c3j 0 0 1 1 0 0 0   (1/2+1/2)/5=0.2 
c4j 0 0 0 1 1 0 0   (1/2+1/2)/11=0.09 
c5j 0 0 0 0 1 1 0  (1/2+1/2)/23=0.043 
c6j 1 0 0 0 0 1 0  (1/2+1/2)/40=0.025 
c7j 0 0 0 0 0 0 -  Selected 

Step 3 c1j - - 0 0 0 0 0  Selected 
 c2j 0 - 1 0 0 0 0   (1/2)/2=0.25 

c3j 0 0 1 1 0 0 0   (1/2+1/2)/5= 0.2 
c4j 0 0 0 1 1 0 0   (1/2+1/2)/11=0.09 
c5j 0 0 0 0 1 1 0   (1/2+1/2)/23=0.043 
c6j - 0 0 0 0 1 0  (1/2)/40=0.012 
c7j 0 0 0 0 0 0 -  Selected 

Step 4 c1j - - 0 0 0 0 0  Selected 
 c2j 0 - - 0 0 0 0  Selected 

c3j 0 0 - 1 0 0 0   (1/2)/5=0.1 
c4j 0 0 0 1 1 0 0  (1/2+1/2)/11=0.09 
c5j 0 0 0 0 1 1 0   (1/2+1/2)/23=0.043 
c6j - 0 0 0 0 1 0  (1/2)/40=0.012 
c7j 0 0 0 0 0 0 -  Selected 

Step5 c1j - - 0 0 0 0 0  Selected 
 c2j 0 - - 0 0 0 0  Selected 

c3j 0 0 - - 0 0 0  Selected 
c4j 0 0 0 - 1 0 0   (1/2)/11=0.045 
c5j 0 0 0 0 1 1 0   (1/2+1/2)/23=0.043 
c6j - 0 0 0 0 1 0   (1/2)/40=0.01 
c7j 0 0 0 0 0 0 -  Selected 

Step 6 c1j - - 0 0 0 0 0  Selected 
c2j 0 - - 0 0 0 0  Selected 
c3j 0 0 - - 0 0 0  Selected 
c4j 0 0 0 - - 0 0  Selected 
c5j 0 0 0 0 - 1 0  (1/2)/23=0.021  

(Selected) 
c6j - 0 0 0 0 1 0   (1/2)/40=0.0125 
c7j 0 0 0 0 0 0 -  Selected 

Selected test cases=( c1j , c2j , c3j , c4j , c5j , c7j ); Requirements satisfied=(ci1, ci2, ci3, ci4, ci5, ci6, 
ci7);  
Total Cost=1+2+5+11+23+10=52 

 
TBAT algorithm: The input for the TBAT algorithm is test pool P and cost 
vector CT. Table 1 shows the inputs test pool P and cost vector CT of the 
TBAT algorithm. The variables are initialized as, n =5, t =2; A =0.5, r =0.5, 

minQ =0; maxQ =1; d =7. Table 3 shows the initialization of x, Q and v. The bat 

population of x is generated randomly. Then, fitness for every solution of x is 
computed based on the developed equation using cost vector CT. The 
obtained values of fitness is as: Fitness(x(1))=  ; Fitness(x(2))=  ; 
Fitness(x(3))=  ; Fitness(x(4))=  ; Fitness(x(5))=  . There is no solution 
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which satisfies the entire test requirement. So, x (1) is taken as best solution 
and is given in Table 4 from initialization. In the first iteration, for  =-0.35, 
 =0.8, =0.2, frequency, velocity and position values are updated which is 
shown in Table 5. Then, fitness is computed for every solution of x: 
Fitness(x(1))=  ; Fitness(x(2))=  ; Fitness(x(3))=  ; Fitness(x(4))=  ; 
Fitness(x(5))=  . We obtained no solutions which satisfies the entire test 
requirement. So, again, x (1) is taken as best solution and is given in Table 6 
at the end of first iteration. In the second iteration, for  =0.35,  =0.8, =0.2, 
frequency, velocity and position values are updated as shown in Table 7. 
Then, fitness is computed for new solution of x values: Fitness(x(1))=  ; 
Fitness(x(2))=47; Fitness(x(3))=  ; Fitness(x(4))=  ; Fitness(x(5))=  . At the 
end of second iteration, the minimum fitness is obtained for x (2). So, we 
selected x (2) as the best solution, shown in Table 8. After finishing two 
iterations, the selected test cases through best solution are (c1j, c2j, c4j, c5j, and 
c7j) and requirements solved are (ci1, ci2, ci3, ci4, ci5, ci6, ci7). The total cost 
required is 47 (1+2+11+23+10) which is obtained by doing the summation of 
all the cost values of selected test cases. 

Table 2 Test pool P and cost vector CT 

 

 ci1 ci2 ci3 ci4 ci5 ci6 ci7 Cost (CT) 
c1j 1 1 0 0 0 0 0 1 
c2j 0 1 1 0 0 0 0 2 
c3j 0 0 1 1 0 0 0 5 
c4j 0 0 0 1 1 0 0 11 
c5j 0 0 0 0 1 1 0 23 
c6j 1 0 0 0 0 1 0 40 
c7j 0 0 0 0 0 0 1 10 

 
Table 3 Initialization of x, Q and v 

 
x 0 1 0 0 1 0 1 

1 0 0 1 0 0 0 
0 1 0 0 1 0 0 
1 0 0 1 0 1 0 
0 0 1 0 1 0 0 

Q 1 1 1 1 1 1 1 
v 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

 
Table 4 Best solution from initialization 

 
xb 0 1 0 0 1 0 1 

 
Table 5 Updated value of x, y, Q and v after iteration 1 

 
v 0.2 0.27 0.2 0.2 0.27 0.2 0.27 

-0.01 0.48 0.2 -0.01 0.48 0.2 0.48 
0.2 0.27 0.2 0.2 0.27 0.2 0.48 
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-0.01 0.48 0.2 -0.01 0.48 -0.01 0.48 
0.2 0.48 -0.01 0.2 0.27 0.2 0.48 

Q -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 
y 0.2 1.27 0.2 0.2 1.27 0.2 1.27 

0.99 0.48 0.2 0.99 0.48 0.2 0.48 
0.2 1.27 0.2 0.2 1.27 0.2 0.48 
0.99 0.48 0.2 0.99 0.48 0.99 0.48 
0.2 0.48 0.99 0.2 1.27 0.2 0.48 

x 0 1 0 0 1 0 1 
1 0 0 1 0 0 0 
0 1 0 0 1 0 0 
1 0 0 1 0 1 0 
0 0 1 0 1 0 0 

 
Table 6 Best solution after iteration 1 

 
xb 0 1 0 0 1 0 1 

 
Table 7 Updated value of x, Q and v after iteration 2 

 
v 0.4 0.54 0.4 0.4 0.54 0.4 0.54 

-0.02 0.96 0.4 -0.02 0.96 0.4 0.96 
0.4 0.54 0.4 0.4 0.54 0.4 0.96 
-0.02 0.96 0.4 -0.02 0.96 -0.02 0.96 
0.4 0.96 -0.02 0.4 0.54 0.4 0.96 

Q -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 
y 0.4 1.54 0.4 0.4 1.54 0.4 1.54 

0.98 0.96 0.4 0.98 0.96 0.4 0.96 
0.4 1.54 0.4 0.4 1.54 0.4 0.96 
0.98 0.96 0.4 0.98 0.96 0.98 0.96 
0.4 0.96 0.98 0.4 1.54 0.4 0.96 

x 0 1 0 0 1 0 1 
1 1 0 1 1 0 1 
0 1 0 0 1 0 1 
1 1 0 1 1 1 1 
0 1 1 0 1 0 1 

 
Table 8 Best solution after iteration 2 

 
xb 1 1 0 1 1 0 1 

5- RESULTS AND DISCUSSION 

This section explains the subject programs taken for experimentation and 
detailed performance evaluation of the proposed TBAT algorithm with existing 
algorithm [2] using various evaluation metrics. 

5-1 EXPERIMENTAL SETUP 

a) Subject programs for evaluation 

The proposed TBAT algorithm is experimented with five subject programs 
taken from Software-artifact Infrastructure Repository (SIR) [9] which contains 
Java, C, C++, and C# programs for experimentation with testing and analysis 
techniques. From the repository, we have taken five different subject 
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programs such as, median, elevator, trityp, Apollo and pool3 which were 
implemented in JAVA as our proposed algorithm has also been implemented 
in JAVA. The detailed description of the subject programs are given in Table 
9. 

Table 9 Descriptions of the SIR subject programs and test suites 
 

Programs 
Size of test 
pool 

LOC 
Number of test 
requirements 

Description 

Median 185 37 6 A program used for median computation 
Elevator 2900 580 15 A program for elevator system 
Trityp 365 73 14 A program for classic triangle classification 

Apollo 20545 4109 177 

The Apollo Lunar Autopilot (Apollo) is a model 
created by an engineer from the Apollo Lunar 
Module Digital autopilot team and included in the 
Java PathFinder distribution. 

Pool3 10440 2088 198 
The program provides robust pooling functionality for 
keyed objects. 

 
b) Evaluation metrics 
The performance of the proposed TBAT and the existing algorithm is 
evaluated using the following four evaluation metrics. SuiteCost is a metric to 
compute the total execution time required for executing test suite. 
SuiteCostreduction is a metric used to compute the percentage of reduction 
capability of the algorithm versus the original computation time required for 
the input test suite. Improvement (cost) is utilized to find the cost improvement 
of the proposed algorithm while compared with the existing algorithm. 
Improvement (%) is a percentage of improvement for the proposed algorithm 
in test suite reduction as compared with the existing algorithm.  


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c) Experimental steps 
The proposed TBAT algorithm is implemented using Java 1.7 with NetBeans 
IDE 7.3. The experimentation is conducted on Windows 7 machines with Intel 
Core Duo processors and 2 GB of memory. At first, required no of test cases 
are generated randomly through a synthetic program. Once we generate test 
cases for a subject program through synthetic program, branch coverage and 
cost is computed by applying test case to the corresponding subject program. 
Here, branch coverage is computed for all the five subject programs by fixing 
flag value in every branch. Through these steps, test pool is formed with a 
value of branch coverage and cost for the required number of test cases. For 
experimentation, we followed an experiential setup like the one described in 
[27]. The comprehensive steps are described as follows: i) randomly generate 
an integer w , LOCTw e *1   

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017 

34



2. Arbitrarily select w test cases from the test pool for each subject program, 
and include those w test cases in test pool. 

3. Ensure whether the test cases in test pool can satisfy all of the test 
requirements. If not, arbitrarily select one more test case that can satisfy one 
or more unsatisfied test requirements, and include the test case into Test 
pool. 

4. Repeat Step 3 until all test requirements are satisfied. 

Once we follow the above steps, we obtain the final test pool which is given 
for the algorithm to perform test suite reduction. For experimentation, we have 
generated 1000 test suites for each program and the proposed TBAT 
algorithm is performed for every test suites. Finally, the average performance 
is taken for performance analysis. 

5-2 PERFORMANCE EVALUATION 

This section presents the performance analysis of the TBAT algorithm using 
various parameters involved. The quantitative values obtained for TBAT 
algorithm is the best case values obtained through the experimentation after 
executing the proposed TBAT algorithm 100 times. Figure 3.a shows the 
performance of TBAT using SCR for various numbers of bats. When a 
number of bats are increased, the performance of the TBAT algorithm in 
terms of SCR is also increased. When the number of the bats is increased 
from 2, 4, 6, 8, and 10, the value of the TBAT using SCR is 40.08, 59.29, 
61.04, 69.66, and 80.89 respectively. Similarly for the elevator programs, the 
value of the TBAT using SCR is increased from 8.38E+1 to 95.57. Similarly, 
for the trityp programs, the value of the TBAT using SCR is increased from 
6.97E+01 to 93.75 when the number of bats increases from 2 to 10. Similarly, 
for the programs Apollo and pool3, the value of the TBAT using SCR 
increased from 83.12 to 98.95 and 99.5 to 99.79 respectively when the 
number of bats increases. The highest performance achieved in median 
programs is 80.89% and 95.5% in elevator program. The best average 
performance in all the five programs is achieved when the numbers of bats 
are fixed as 10.  

Figure 3.b presents the SCR graph for various values of minimum frequency. 
When the minimum frequency is increased from 0 to 0.4, the value of the 
median program is found to decrease from 85.33 to 71.81. The value of the 
TBAT using SCR for the elevator programs is 90.37, 92.69, 93.28, 94.64, and 
92.99 when the minimum frequency value increases as 0, 0.1, 0.2, 0.3, and 
0.4 respectively. Likewise, the value of the trityp programs using the proposed 
TBAT and SCR is 9.66, 78.09, 87.22, 10.94, and 90.46 respectively with the 
increasing minimum frequency value from 0 to 0.4. The best performance 
achieved in trityp is 90.46% and 98.9% in Apollo program. For pool3, the 
value of TBAT using SCR is increasing from 99.71, 99.80, 99.74, 97.73, and 
99.729 respectively. However, the best value of the pool3 is attained when the 
minimum frequency is 0.1. This graph shows that the average performance for 
the value of Qmin as 0 is 76.1% and the best average performance of 89.8% 
is achieved when the value of Qmin is fixed as 0.1.  
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Figure 4.a shows the performance of TBAT using SCR for various values of 
maximum frequency. The maximum frequency is varied as 0.6, 0.7, 0.8, 0.9, 
and 1 for all the programs like the median, elevator, trityp, Apollo, and pool3. 
The value of the median program using the TBAT with the SCR reaches 84.34 
from 91.31, elevator programs reaches 93.36 from 99.94, trityp attains 85.58 
from 99.93, Apollo program attains 40.33 from 99.99, and pool3 attains 99.69 
from 99.99. In this graph, the maximum performance in pool3 and apollo is 
99.9%. From the graph, we know that the best average performance of 98.2% 
is achieved when we fixed Qmax as 0.6. It is clearer that the value of the 
programs like the median, elevator, trityp, Apollo, and pool3 attains a 
maximum value of the average performance at minimum value of the 
maximum frequency and the value reduces for the increasing value of the 
maximum frequency.  

From the figure 4.b, maximum performance of around 99% is achieved except 
median program. Here, the best average performance of 97.8% is achieved 
when we fixed pulse rate as 0.2. It is very clear from the graph that the SCR 
value of the elevator, Apollo, median, and trityp decreases when the pulse 
rate is increased but SCR value increases for pool3 with the increasing pulse 
rate. The pulse rate used for analyzing the value of the SCR includes 0.2, 0.4, 
0.6, 0.8, and 1 respectively. The value of the SCR reaches 62.51 from 88.33 
for median program, 90.50 from 99.95 for the elevator program, 94.64 from 
99.91 for the trityp program, 94.50 from 99.99 for the Apollo program, and 
increases for pool3 from 99.73 to 99.78. However, the maximum performance 
of SCR is noted for all the programs, namely median, elevator, trityp, and 
Apollo when the pulse rate is 0.2. The program pool3 experiences the 
maximum performance when the pulse rate is 1. 

Figure 5.a shows the performance of TBAT using SCR for various values of 
loudness. The value of loudness used for analysis is 0.2, 0.4, 0.6, 0.8, and 1 
respectively. The SCR value of the median program when the loudness is 0.2 
is 93.45, 76.84 for 0.4, 48.66 for 0.6, 27.27 for 0.8, and 70.33 for 1 as 
loudness. The SCR value for the elevator program when the loudness is 
increased from 0.2 to 1 is 99.94 to 94.77 respectively. The SCR values for the 
trityp program when the loudness value is increased from 0.2 to 1 is 
decreased from 99.91 to 91.86 and for the Apollo program, the SCR value is 
decreased from 99.99 to 98.83 respectively. But the value of the pool3 is 
increased from 98.22 to 99.68 with the increasing value of the loudness. The 
maximum value of SCR achieved in median program is 93.45% while the 
other four programs obtained the value of above 99%. Here, the best average 
performance of 98.3% is achieved when the value of loudness is fixed as 0.2.  

Figure 5.b shows the performance of TBAT using for a various number of 
iterations. When iterations are increased, SCR is also increased. The value of 
SCR for the programs median, elevator, trityp, Apollo, and pool3 is increased 
from 72.36 to 96.56, 43 to 95.98, 71.48 to 92, 84.95 to 98.88, and 98.92 to 
99.58 when the number of iterations increases from 5 to 25. However, the 
maximum performance in terms of SCR is obtained when the value of 
iterations are fixed as 25. After the performance evaluation, we found that 
these values such as, n =10, t =25; A =1, r =0.2, minQ =0.1; maxQ =0.6 are 

given the minimum cost after test case reduction. So, we fixed these values 
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for further comparative analysis with existing algorithm called, 
GreedyEIrreplaceability. 

 
(a) (b) 

Figure 3 Performance of TBAT using SCR, a) for various numbers of bats b) for 
various minimum frequency 

 

(a) (b) 
Figure 4 Performance of TBAT using SCR, a) for various maximum frequency b) for 

various pulse rate 
 

 
(a) (b) 

Figure 5 Performance of TBAT using SCR, a) for various loudness b) for various 
iterations 
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5-3 COMPARATIVE ANALYSIS 

a) Analysis 1: Reduction capability of algorithms 
Test pool is directly given to the algorithms, TBAT, Systolic Genetic Search 
[28] and GreedyEIrreplaceability. The ultimate aim of both the algorithms is to 
select test cases which should satisfy all the test requirements. Accordingly, 
the test suite is reduced by both the algorithms and the cost for all the 
selected test cases are computed and shown in Table 10 and 11 respectively. 
Reduction capability of the algorithms is analyzed through the SCR and cost. 
According to Table 10 for Te of 0.5, the proposed TBAT algorithm provides a 
minimum cost for the four programs except for pool3.  The total cost for the 
proposed TBAT algorithm is 30.32 msec for median program as compared to 
the value of 66.7 for the existing algorithm. Here, the systolic genetic search 
obtained the 35.1 msec in the variance of 4 msec. Similarly, while comparing 
with the original cost required for all the test pool, the proposed TBAT 
achieved 89.2% improvement in the variance of 1% as compared with the 
existing algorithm which improves only 76.2% in the variance of 5%. The 
existing systolic genetic search obtained the SCR of 87.5% in the variance of 
1%. We achieved 93.7% improvement in elevator program as compared with 
90.69% improvement achieved by the existing algorithm. The proposed TBAT 
obtained SCR values of 93.7%, 99.44%, and 99.5% for trityp, apollo and 
pool3 programs as compared with the existing algorithm which obtained 
90.64%, 91.05% and 99.6% for these three programs respectively. Here, the 
systolic genetic search obtained the SCR values of 93.25%, 99.42% and 
99.47% for trityp, apollo and pool3 programs. The range of variance for every 
different random initialization is minimum for the proposed algorithm as 
compared with other algorithms. 

Table 11 describes the Reduction capability of algorithms (in msec) for input 
Te of 0.75. From Table 11, the proposed TBAT obtained the cost of 19.5ms, 
3.0E4ms, 1.7E4ms, 6.3E4, 4.61E8 for the five subject programs with the 
variance of 2ms, 451 ms, 168 msec, 152 msec and 980 msec. In terms of 
SCR, the proposed TBAT achieved the reduction improvement of 92.5%, 
93.7%, 75.0%, 98.9% and 99.6% against the existing algorithm which reached 
the improvement of 74.4%, 90.66%, 64.07%, 90.78% and 99.7%. The existing 
systolic genetic search obtained the SCR of 89.24%, 90.62%, 64.5%, 98.72% 
and 99.54% on the same set of programs. For the same analysis, the range of 
variance shows a minimum for the proposed TBAT algorithm as compared 
with the existing algorithms. Overall, the proposed algorithm proved that much 
more reduction of test cases is possible as compared to the existing algorithm 
except for pool3.  

Table 10 Reduction capability of algorithms (in msec) for input threshold ( eT ) of 0.5 

 

Progra
m 
 

Original 
TBAT-
Cost 

GreedyEIrre
placeability-

Cost 

Systolic 
genetic-

Cost 

TBAT-
SCR 

Greedy
EIrrepla
ceabilit
y-SCR 

Systolic 
genetic-

SCR 

Median 280.826 30.32  3 66.716  7 35.1  4 89.2  1 
76.24

 5 

87.50

 1 

elevator 162156.3 
10141.3

 210 
15088.77 

256 
12568 

451 
93.74 

1 

90.69

 0.7 

92.24

 2 

trityp 61145.42 3822.99 5721.18  7 4122  2 93.74  90.64 93.25
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Table 11 Reduction capability of algorithms (in msec) for input threshold of 0.75 

 

 

b) Analysis 2: Relative Reduction capability of algorithms 

Table 12 provides Relative Reduction capability of algorithms for input 
threshold of 0.5. Relative Reduction capability provides the improvement of 
the proposed algorithm when compared with the existing algorithm. From 
Table 12, the proposed TBAT achieved the cost improvement of 30.32, 
10141.3, 3822.99, 40525.5, and 5.8E+08 for all the five subject programs in 
the variance of 3, 210, 400, 550 and 1248. The percentage of improvement 
for the proposed TBAT as compared with existing one is 54.5%, 32.78%, 
33.17%, 93.76% and -55.07% in all the five programs in the variance of 2%, 
2%, 4%, 0.2% and 12%. The percentage of improvement for the proposed 
TBAT as compared with systolic genetic search is 15.76%, 23.92%, 7.82%, 
2.56% and 5.17% in all the five programs in the variance of 5%, 1%, 4%, 1% 
and 5%. Table 4 shows the Relative Reduction capability of algorithms for 
input threshold of 0.75. The improvement is 70.6%, 33.33%, 30.45%, 88.36% 
and -54.69% for median, elevator, trityp, Apollo and pool3 programs. For input 
threshold of 0.75 shown in Table 13, the cost improvement is 47.12, 15018, 
7580.4, 482987 and -1.6E8 for Median, elevator, trityp, Apollo, pool3 
programs. The improvement percentage of the proposed TBAT algorithm with 
respect to the systolic genetic search is 43.41%, 50.65%, 29.61%, 19.36% 
and 26.08% in the variance of 4%, 4%, 8%, 7% and 5%. Overall, the 
proposed algorithm proved that the relative reduction of test suite is improved 
compared to existing algorithm except pool3. 

Due to the binary solution coding of TBAT algorithm, the searching process 
would convergence to a solution which is not an optimal one for pool3. The 
binary solution coding can be represented with integer to obtain the more 
suitable solution which can improve the performance of the TBAT algorithm in 
pool3. 

 

 400 45 54 2  0.5  1 

Apollo 7262833 
40525.5

 550 

649642.95

 452 

41563.2

 545 
99.44 

0.5 

91.05

 0.1 

99.42

 0.2 

Pool3 
1.17E+1

1 
5.8E+08

 1248 

375181608

 5689 

6.1E+08

 1350 
99.50 

0.25 

99.68

 0.3 

99.47

 0.1 

Program Original 
TBAT-
Cost 

GreedyEIrreplac
eability-Cost 

Systolic 
genetic-

Cost 

TBAT
-SCR 

GreedyEIrre
placeability-

SCR 

Systolic 
genetic-

SCR 

Median 261.254 19.594 
2 

66.716  5 
28.1 

10 

92.50

 1 
74.46  5 89.24  2 

elevator 482915.6 
30045.1

 451 
45063.40  459 

45263.1

 154 

93.77

 2 
90.66  1 90.62  1 

trityp 69273.73 
17307.7

 168 
24888.1  324 

24589.5

 451 

75.01

 5 
64.07  1 64.50  3 

Apollo 5930362 
63581.4

 152 
546568.61  99

6 

75896.5

 658 

98.92

 1 
90.78  2 98.72  1 

Pool3 1.28E+11 
4.6E+08

 980 
296598168  89

5 

5.8E+08

 987 

99.64

 0.
1 

99.76  0.2 99.54  0.2 
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Table 12 Relative Reduction capability of algorithms for input threshold 0.5 
 

Progr
am 

TBAT-
Cost 

GreedyEIrreplac
eability-Cost 

Systolic 
genetic-
Cost 

Improvem
ent (cost) 
(TBAT vs 
GE) 

Improve
ment 
(cost) 
(TBAT 
vs 
systolic 
genetic) 

Improve
ment 
(%)(TBA
T vs GE) 

Improve
ment 
(%)(TBA
T vs 
systolic 
genetic) 

Media
n 30.32  3 66.716  7 35.1  4 36.396  2 4.78  2 

54.55 
2 

15.76 
5 

elevat
or 

10141.3 
210 

15088.77  256 
12568  4
51 

4950  58
9 

2426.7

 22 
32.78 
2 

23.92 
1 

trityp 3822.99 
400 

5721.18  745 
4122  25
4 

1898.19 
547 

299.01

 14 
33.17 
4 

7.82  4 

Apollo 40525.5 
550 

649642.95  452 
41563.2 
545 

609117 
789 

1037.7

 11 
93.76 
0.2 

2.56  1 

Pool3 
5.8E+08

 1248 
375181608  56
89 

6.1E+08

 1350 

-
2.1E+08

 7892 

3E+07

 458 

-

55.07 
12 

5.17  5 

 
Table 13 Relative Reduction capability of algorithms for input threshold 0.75 

 

Prog
ram 

TBAT-
Cost 

Greedy- 
EIrreplaceability-

Cost 

Systolic 
genetic-

Cost 

Improve
ment 
(cost) 

(TBAT vs 
GE) 

Improve
ment 
(cost) 

(TBAT vs 
systolic 
genetic) 

Improve
ment 

(%)(TBA
T vs GE) 

Improve
ment 

(%)(TBA
T vs GE) 

Medi
an 

19.594

 2 
66.716  5 

28.1  1
0 

47.1225

 2 
8.506 

1 
70.63 

1 
43.41 

4 

eleva
tor 

30045.1

 451 
45063.40  459 

45263.1

 154 
15018 

962 
15218 

86 
33.32 

2 
50.65 

4 

trityp 
17307.7

 168 
24888.1  324 

24589.5

 451 

7580.4

 856 

7281.8

 58 
30.45 

5 
29.61 

8 

Apoll
o 

63581.4

 152 
546568.61  996 

75896.5

 658 

482987

 796 

12315.1

 789 
88.36 

1 
19.36 

7 

Pool3 
4.6E+08

 980 
296598168  895 

5.8E+08

 987 

-
1.6E+08

 887 

5.8E+08

 997 

-

54.69 
2 

26.08 
5 

6- CONCLUSION 

This paper presented a new optimization algorithm called, TBAT algorithm to 
minimize the cost of regression testing. This new algorithm was developed to 
handle the diversity problem in generating new movements of bats to reach 
the optimal solution easily. The minimization function developed here to 
improve the speed of convergence contains two constraints, satisfying the 
entire test requirement and minimizing cost measure. In the proposed TBAT 
algorithm, initial solutions are generated randomly and fitness is evaluated 
using the proposed minimization function. The generation of the new solution 
set is done by the proposed formula to reach the minimum cost function faster 
than greedy-based algorithms. The experimental study is done with five 
programs from SIR using four different evaluation metrics. The performance of 
the proposed TBAT algorithm is extensively analyzed with different parametric 
values to understand the best parameters of the proposed algorithm in test 
suite reduction. The comparative analysis is performed with the existing 

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017 

40



GreedyEIrreplaceability algorithm and the Systolic Genetic Search (SGS) 
algorithm to show the performance improvement of the proposed algorithm.  
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