
Specification of Vertical Semantic
Consistency Rules of UML Class Diagram

Refinement Using Logical Approach

Nuraini Abdulganiyyi(1), Noraini Ibrahim (2), and Ruhaya AbdulAziz(3)

(1) Department of Mathematics and Computer Science, Federal University Kashere,
Gombe State, Nigeria

E-mail: agnuraini@gmail.com
(2) Department of Software Engineering, Universiti Tun Hussein Onn Malaysia

(UTHM) 86400, Parit Raja, Batu Pahat, Johor, Malaysia
E-mail: noraini@uthm.edu.my

(3) Department of Software Engineering Universiti Tun Hussein Onn Malaysia
(UTHM) 86400, Parit Raja, Batu Pahat, Johor, Malaysia

E-mail: ruhaya@uthm.edu.my

ABSTRACT

Unified Modelling Language (UML) is the most popular modelling language
use for software design in software development industries in which class
diagram is being the most frequently used diagram. Despite the popularity,
UML is being affected by inconsistency problems of its diagrams at the same
or different abstraction levels. To address inconsistency in UML, this research
has specified twenty-four abstraction rules of class’s relation semantic among
any three related classes of a refined class diagram to semantically equivalent
relations of two of the classes using a logical approach. This research has
also formalized three vertical semantic consistency rules of a class diagram
refinement identified by previous researchers using a logical approach and the
set of formalized abstraction rules. The results were successfully evaluated
using hotel management system and passenger list system case studies and
were found to be reliable and efficient.

Keywords- Cardinality Abstraction, Class Diagram, Inconsistency, Logical

Approach, Semantic Abstraction Rule, UML.

1- INTRODUCTION

The increasing dependency on computers and software applications for
saving lives, properties and time, in our contemporary world has escalated to
all sectors of human endeavours. Thereby, led to an increase in the demand
of efficiency and reliability of the computers and the software applications
before usage, to avoid claims of what they were provided to save (that is:
lives, properties and time). To ensure efficiency and reliability of software
applications, software experts have agreed to define the best practice for
software development, namely software engineering. The discipline of
software engineering is coined to deal with poor quality of software, get
projects exceeding time and budget under control. It also ensures that
software is built systematically, rigorously, measurably, and within
specification. In other words, software engineering is the study and application
of engineering to the design, development, and maintenance of software from

Specification of Vertical Semantic Abdulganiyyi, Ibrahim, and AbdulAziz

45

the start to the end of the development [1]. This research is aimed at
addressing the inconsistencies of software at the design stage. Design plays a
central role in the activities that leads to the development or maintenance of
good software by giving an abstract representation of the system prior to
development or maintenance. The consistency of the developed or
maintained system with the user requirement specifications depends mostly
on the consistency of the design. According to [2], software design is the
process of realizing software solution to one or more set of problems.

The largest segment of design phase of software development life cycle is
creating a consistent design based on a comprehensive model. These days,
the infrastructures for creating this design are usually based on object-
oriented modelling languages. Unified Modelling Language (UML) is the most
popular object-oriented modelling language use to model a system in a way
that the status of the various objects replicate the user’s point of view or
specification [3]. The modelling task focuses on definitions and descriptions of
objects, features and actions to be operated by the user during interaction,
rather than on the programming aspect [4].

2- UNIFIED MODELLING LANGUAGE

The Unified Modelling Language (UML) is a language and notation system
use to specify, construct, visualize, and document models of software systems
[5]. It provides sets of diagrams to model structural, behavioural, and
interaction aspects of an object-oriented system. Each diagram depicts a
particular design aspect of the system. UML consists of many diagrams
depending on the version. For example, UML version 2.0 has 13 diagrams [5],
both UML version 2.2 and 2.4 have 14 diagrams [6] and UML version 2.5 has
17 diagrams [7]. The presence of many UML diagrams, to model a system,
brings a variety of views that overlap with respect to information depicted in
each that can leave overall system design specification in an inconsistent
state [8].

3- UML MODEL CONSISTENCY

Consistency in UML model is a state in which the structures, features and
elements that appear in a model are compatible and in alignment with
contents of the model and other related models with respect to requirement
being modeled and UML meta-model [9]. For example, the structures,
functions and relations in an initial class diagram obtained during an analysis
phase of a software development must be compatible with a detailed class
diagram developed during the design phase of the software development. In
addition, unambiguous and consistent UML models are necessary for
successful development of quality Information System (IS) [10]. However,
UML model is hardly free of inconsistency problems within or with other
models at the same or different abstraction levels. Inconsistency in UML
model(s) usually arose due to analysts or designers viewing the same system
from different points of views. Other possible causes of UML inconsistency are
iterative process of an IS development, lack of UML knowledge or practice,
imprecise semantic nature of the UML diagrams, difference in geographical

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

46

location of developers, and multiple interpretations of user’s requirements and
UML notations [11].

There are two types of consistency problems in UML; vertical and horizontal.
Vertical and horizontal consistency problems are also classified into syntactic
and semantic consistency problems. Despite all the challenges of consistency
uncertainty of UML models, UML is also the most widely used modelling
language in object-oriented software development industries. Class diagram is
the most used UML diagram [12]. For this reason, this research will propose a
formal specification for three vertical semantic consistency rules of class
diagram refinement identified by [13] using a logical approach. The definitions
of the types and classifications of consistencies are described as follows.

3-1 VERTICAL CONSISTENCY

Vertical consistency in UML is a state of semantic or syntactic compatibility of
models built at different levels of abstraction such as between a model and its
refinement. It is also called inter-consistency [11]. For example, an abstract
class diagram developed in the analysis phase of software development must
be semantically and syntactically consistent with a detailed class diagram
developed in the design phase of the software development.

3-2 HORIZONTAL CONSISTENCY

Horizontal consistency is a state of semantic or syntactic compatibility of
models built at the same level of modelling abstractions. It is also called intra-
consistency [11]. For example, a class diagram describing the static aspects
of an abstract model must be semantically and syntactically consistent with a
state machine diagram describing the dynamic aspects of the classes in the
model.

3-3 SEMANTIC CONSISTENCY

Semantic consistency is a state that requires models’ behaviours to be
semantically compatible with one another [14]. For example, a class diagram
and its refinement must be semantically compatible with each other. Unlike
syntactic consistency, there is no specific method for specifying semantic
consistency rules and constraints [15].

3-4 SYNTACTIC CONSISTENCY

Syntactic consistency guarantees that a model conforms to abstract syntax of
the modelling language as specified by its meta-model [14]. For example, in a
class diagram, the design of each class as well as the relationship between
them must be syntactically correct in accordance with the class diagram meta-
model. In general, syntactic consistency can be automatically checked and
therefore is supported by current UML CASE tools [15].

4- PROBLEM STATEMENT

Despite the popularity of UML for object-oriented software modeling in
software development industries, UML diagrams are being affected by
inconsistency problems at the same and different modeling abstractions.

Specification of Vertical Semantic Abdulganiyyi, Ibrahim, and AbdulAziz

47

Inconsistency problems of UML diagrams are the major setback recorded
affecting modeling with UML. Solving UML inconsistencies have gained the
attention of many researchers on how to handle inconsistency in UML, though
there are limited works in UML vertical semantic inconsistency management
[8]. In general, syntactic consistency problems can be automatically checked
and, therefore, are supported by current UML CASE tools [15]. Unlike
syntactic consistency, there is no specific method for specifying semantic
consistency rules and constraints [15]. Shen, Wang, & Egyed (2009) identified
three vertical semantic consistency rules of a class diagram refinement and
used informal approaches to manage them. The approaches used were
Integrated Abstraction and Comparison (IAC), and Separated Abstraction and
Comparison (SAC). These techniques require a significant amount of time and
memory space in order to handle inconsistencies of a class diagram
refinement. These are due to the large number of rules check and iterations
involved in the algorithms. On the contrary, this research will formulate the
same vertical semantic consistency rules of class diagram refinement
achieved with SAC and IAC in a more effective and efficient manner using a
logical approach.

5- REVIEW OF PREVIOUS WORKS

Although there are many proposals for enhancing modelling with UML, only a
few works on UML semantic consistency management [8], [16]. While some of
the proposals used formal methods to enhance UML modelling and software
development process, others used informal methods. Lima et al., (2009)
proposed a formal verification and validation (V&V) technique to check
semantic consistency of a sequence diagram. The proposed technique
generate PROMELA-based model from interactions expressed in a given
sequence diagram. SPIN model checker is then used to simulate the
execution and to confirm sequence diagram properties are written in Linear
Temporal Logic (LTL). The technique was implemented as an Eclipse plug-in,
with human understandable feedback to the developer. The following
semantic rules of a sequence diagram were addressed; lifeline that performed
the last action, the last completed action (sent or received), message used in
the final action, and lifeline to/from which a message was sent/received. This
technique is difficult to extend to static components of UML diagrams.
According to [18], PROMELA is a process modelling language which intended
use is to verify the logic of parallel systems. In other words, PROMELA can be
highly suitable for modelling dynamic properties but not static features.

Shen, Wang, & Egyed (2009) presented two informal methods for checking
consistency between a class diagram and its refinement at different levels of
modelling abstractions. The presented techniques were Integrated Abstraction
and Comparison (IAC), and Separated Abstraction and Comparison (SAC).
The authors further demonstrated that SAC is highly favourable for
consistency checking of software models than IAC. The techniques addressed
three semantic consistency rules of class diagram refinement. The addressed
rules are stated as follows; (1) every low-level class refines at most one high-
level class, (2) every high-level class has at least one low-level class, which

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

48

refines the high-level class, and (3) the group of relationships between any
two high-level classes must be identical with the group of relationships
between their corresponding low-level classes. The methods were
implemented and integrated with IBM Rational Rose design tool.

He et al. (2013) proposed a method of ontology-based semantics confirmation
of UML behaviour diagrams. The authors divided semantics of behaviour
diagrams into static and dynamic semantics. The static semantics are defined
as the notations and constraints in UML behavioural diagrams while the
dynamic semantics are defined as the semantic relations among the instances
of the notations while interacting. The static semantics of behavioural
diagrams are transformed into ontology web language description logic (OWL
DL) by converting UML behaviour diagrams and their meta-models into a DL
knowledge base. While the dynamic semantics are specified in DL-Safe rules
that are then expressed by SWRL (Semantic Web Rule Language) and added
to the OWL DL ontology. The OWL DL is then used to check both vertical and
horizontal semantic consistency of activity, sequence, and state diagrams.

Knapp, Mossakowski, & Roggenbach (2014) proposed a technique called
institution based heterogeneous approach for checking semantic consistency
among UML diagrams. The proposed framework can be used to verify
consistency of different UML diagrams both horizontally and vertically. The
vertical semantic consistency addressed in the proposal checks whether the
state machine satisfies an OCL invariant or an OCL pre-/post-condition.

Abdulganiyyi, N. and Ibrahim, N., (2014) presented abstraction rules of a class
diagram using a logical approach. The rules were evaluated using only one
case study of hotel management system.

However, there are still issues with UML consistency checking and
management, due to ambiguity of some of the proposed rules, unconformity to
meta-model of the UML diagram(s), in-extensibility of some of the techniques,
sometimes meaningless consistency rules proposals as well as impractical
applicability of the proposed rules [8]. This research will represent the
abstraction rules of [21] and formalized three vertical semantic consistency
rules of a class diagram refinement identified by previous researchers using a
logical approach and the set of formalized abstraction rules of [21]. The
results will be evaluated with two case studies.

6- SEMANTIC ABSTRACTION OF CLASS’S RELATION
USING LOGIC

Logic is the basis for stating formal proofs in all branches of mathematics [22].
This article uses logic to abstract a class diagram through breaking
relationship between three classes logically to semantic equivalent relation of
two of the classes. The following definitions will be used to formalize rules for
abstracting a class diagram.

Definition 1: Let “CD” be a class diagram that contains a finite set of classes
“CLs” and a finite set of relations “R” between classes. Thus, it can be defined
as

Specification of Vertical Semantic Abdulganiyyi, Ibrahim, and AbdulAziz

49

 𝐶𝐷 = {< 𝐶𝐿𝑠 >, < 𝑅 >} (1)
Where

 𝐶𝐿𝑠 = {𝐶𝐿𝑖 |1 ≤ 𝑖 ≤ 𝑛, 𝑛𝑍+} is a finite set of classes (2)
And

 𝑅 = {𝐷, 𝐺, 𝐴, A


, 𝑆} (3)
Where

𝐷 = {𝑑𝑖 | 0 ≤ 𝑖 ≤ 𝑞, 𝑞𝑍+} is a finite set of dependencies,

𝐺 = {𝑔𝑖 | 0 ≤ 𝑖 ≤ 𝑝, 𝑝𝑍+} is a finite set of generalization,

𝐴 = {𝑎𝑖 | 0 ≤ 𝑖 ≤ 𝑡, 𝑡𝑍+} is a finite set of bidirectional aggregation,

A


= { a


𝑖
 | 0 ≤ 𝑖 ≤ 𝑢, 𝑢𝑍+} is a finite set of unidirectional aggregation.

𝑆 = {𝑠𝑖| 1 ≤ 𝑖 ≤ 𝑚, 𝑚𝑍+} is a finite set of association.

Definition 2: Let “CL” be a class in a class diagram, CL consists of a finite set
of attributes and operations. Thus, it can be defined as:
𝐶𝐿 = {𝐴𝑡𝑡𝑟, 𝑂𝑝𝑟} (4)
Where

𝐴𝑡𝑡𝑟 = {𝑎𝑡𝑡𝑟𝑖 | 0 ≤ 𝑖 ≤ 𝑘, 𝑘 𝑍+} is a finite set of attributes in a class (CL).

𝑂𝑝𝑟 = {𝑜𝑝𝑟𝑖 | 0 ≤ 𝑖 ≤ 𝑙, 𝑙 𝑍+} is a finite set of operations in a class (CL).

Definition 3: Let “𝐶𝐿𝑖”, 𝐶𝐿𝑗”, 𝑎𝑛𝑑 “𝐶𝐿𝑘” be classes in a class diagram such that

𝐶𝐿𝑖 , 𝐶𝐿𝑗 , 𝐶𝐿𝑘 ∈ 𝐶𝐷 for 𝑖 𝑗 𝑘, 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛 . let “𝐷”, “𝐺”, “𝐴”, “𝑆”  𝑅 be

possible relations between any two classes in a class diagram.
To abstract relationship R among any three related classes in a class

diagram, the following rules are developed to convert the relationship among
any three classes: CLi, CLj, and CLk to the semantic equivalent relations of
two of the classes (CLi and CLj, or CLk and CLi, or CLj and CLk). From
Equation 1, 3 and 4 the following rules are developed.

Rule 1: If CLi aggregates CLj and CLj aggregates CLk then CLi aggregates CLk

transitively.

If (𝐶𝐿𝑖 𝐴 𝐶𝐿𝑗)  (𝐶𝐿𝑗 𝐴 𝐶𝐿𝑘)  (𝐶𝐿𝑖 𝐴 𝐶𝐿𝑘) (Transitivity)

Rule 2: If CLi aggregates CLj and CLj associates CLk then transitively CLi

associates CLk.

𝐼𝑓 (𝐶𝐿𝑖 𝐴 𝐶𝐿𝑗)  (𝐶𝐿𝑗 𝑆 𝐶𝐿𝑘)  (𝐶𝐿𝑖 𝑆 𝐶𝐿𝑘) (Transitivity)

Rule 3: If CLi aggregates CLj and CLi associates CLk then semantically CLj

associates CLk.

If (𝐶𝐿𝑖 𝐴 𝐶𝐿𝑗)  (𝐶𝐿𝑖 𝑆 𝐶𝐿𝑘)  (𝐶𝐿𝑗 𝑆 𝐶𝐿𝑘) (Semantically)

Rule 4: If CLi aggregate CLj and CLk associate CLi then transitively CLk

associates CLj.

 If (𝐶𝐿𝑖 𝐴 𝐶𝐿𝑗)  (𝐶𝐿𝑘 𝑆 𝐶𝐿𝑖)  (𝐶𝐿𝑘 𝑆 𝐶𝐿𝑗) (Transitivity)

Rule 5: If CLi aggregate CLj and CLk associate CLj then semantically CLi

associates CLk.

If (𝐶𝐿𝑖 𝐴 𝐶𝐿𝑗)  (𝐶𝐿𝑘 𝑆 𝐶𝐿𝑗)  (𝐶𝐿𝑘 𝑆 𝐶𝐿𝑖) (Semantically)

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

50

Rule 6: If CLi aggregates CLj and CLj depends on CLk then transitively CLi

depends on CLk.

If (𝐶𝐿𝑖 𝐴 𝐶𝐿𝑗)  (𝐶𝐿𝑗 𝐷 𝐶𝐿𝑘)  (𝐶𝐿𝑖 𝐷 𝐶𝐿𝑘) (Transitivity)

Rule 7: If CLi aggregates CLj and CLi depends on CLk then semantically CLj

depends on CLk.

 𝐼𝑓 (𝐶𝐿𝑖 𝐴 𝐶𝐿𝑗)  (𝐶𝐿𝑖 𝐷 𝐶𝐿𝑘)  (𝐶𝐿𝑗 𝐷 𝐶𝐿𝑘) (Semantically)

Rule 8: If CLi aggregate CLj and CLk depend on CLi then transitively CLk

depend on CLj.

 𝐼𝑓 (𝐶𝐿𝑖 𝐴 𝐶𝐿𝑗)  (𝐶𝐿𝑘 𝐷 𝐶𝐿𝑖)  (𝐶𝐿𝑘 𝐷 𝐶𝐿𝑗) (Transitivity)

Rule 9: If CLi aggregate CLj and CLk depend on CLj then semantically CLk

depend on CLi.

 𝐼𝑓 (𝐶𝐿𝑖 𝐴 𝐶𝐿𝑗)  (𝐶𝐿𝑘 𝐷 𝐶𝐿𝑗)  (𝐶𝐿𝑘 𝐷 𝐶𝐿𝑖) (semantically)

Rule 10: If CLi generalized CLj and CLj generalized CLk then transitively CLi

generalized CLk.

𝐼𝑓 (𝐶𝐿𝑖 𝐺 𝐶𝐿𝑗)  (𝐶𝐿𝑗 𝐺 𝐶𝐿𝑘)  (𝐶𝐿𝑖 𝐺 𝐶𝐿𝑘) (Transitivity)

Rule 11: If CLi generalized CLj and CLj associates CLk then transitively CLi

associates CLk.

 𝐼𝑓 (𝐶𝐿𝑖 𝐺 𝐶𝐿𝑗)  (𝐶𝐿𝑗 𝑆 𝐶𝐿𝑘)  (𝐶𝐿𝑖 𝑆 𝐶𝐿𝑘) (Transitivity)

Rule 12: If CLi generalized CLj and CLi associates CLk then semantically CLj

associates CLk.

𝐼𝑓 (𝐶𝐿𝑖 𝐺 𝐶𝐿𝑗)  (𝐶𝐿𝑖 𝑆 𝐶𝐿𝑘)  (𝐶𝐿𝑗 𝑆 𝐶𝐿𝑘) (Semantically)

Rule 13: If CLi generalized CLj and CLk associates CLi then transitively CLk

associates CLj.

𝐼𝑓 (𝐶𝐿𝑖 𝐺 𝐶𝐿𝑗)  (𝐶𝐿𝑘 𝑆 𝐶𝐿𝑖)  (𝐶𝐿𝑘 𝑆 𝐶𝐿𝑗) (Transitivity)

Rule 14: If CLi generalized CLj and CLk associates CLj then semantically CLk

associates CLi.

𝐼𝑓 (𝐶𝐿𝑖 𝐺 𝐶𝐿𝑗)  (𝐶𝐿𝑘 𝑆 𝐶𝐿𝑗)  (𝐶𝐿𝑘 𝑆 𝐶𝐿𝑖) (Semantically)

Rule 15: If CLi generalized CLj and CLj depends on CLk then transitively CLi

depends on CLk.

𝐼𝑓 (𝐶𝐿𝑖 𝐺 𝐶𝐿𝑗)  (𝐶𝐿𝑗 𝐷 𝐶𝐿𝑘)  (𝐶𝐿𝑖 𝐷 𝐶𝐿𝑘) (Transitivity)

Rule 16: If CLi generalized CLj and CLi depends on CLk then semantically CLj

depends on CLk.

𝐼𝑓 (𝐶𝐿𝑖 𝐺 𝐶𝐿𝑗)  (𝐶𝐿𝑖 𝐷 𝐶𝐿𝑘)  (𝐶𝐿𝑗 𝐷 𝐶𝐿𝑘) (Semantically)

Rule 17: If CLi generalized CLj and CLk depends on CLi then transitively CLk

depends on CLj.

𝐼𝑓 (𝐶𝐿𝑖 𝐺 𝐶𝐿𝑗)  (𝐶𝐿𝑘 𝐷 𝐶𝐿𝑖)  (𝐶𝐿𝑘 𝐷 𝐶𝐿𝑗) (Transitivity)

Rule 18: If CLi generalized CLj and CLk depends on CLj then semantically CLk

depends on CLi.

𝐼𝑓 (𝐶𝐿𝑖 𝐺 𝐶𝐿𝑗)  (𝐶𝐿𝑘 𝐷 𝐶𝐿𝑗)  (𝐶𝐿𝑘 𝐷 𝐶𝐿𝑖) (Semantically)

Rule 19: If CLi generalized CLj and CLj aggregates CLk then transitively CLi

aggregates CLk.

𝐼𝑓 (𝐶𝐿𝑖 𝐺 𝐶𝐿𝑗)  (𝐶𝐿𝑗 𝐴 𝐶𝐿𝑘)  (𝐶𝐿𝑖 𝐴 𝐶𝐿𝑘) (Transitivity)

Rule 20: If CLi generalized CLj and CLi aggregates CLk then semantically CLj

aggregates CLk.

𝐼𝑓 (𝐶𝐿𝑖 𝐺 𝐶𝐿𝑗)  (𝐶𝐿𝑖 𝐴 𝐶𝐿𝑘)  (𝐶𝐿𝑗 𝐴 𝐶𝐿𝑘) (Semantically)

Specification of Vertical Semantic Abdulganiyyi, Ibrahim, and AbdulAziz

51

Rule 21: If CLi generalized CLj and CLk aggregates CLi then transitively CLk

aggregates CLj.

𝐼𝑓 (𝐶𝐿𝑖 𝐺 𝐶𝐿𝑗)  (𝐶𝐿𝑘 𝐴 𝐶𝐿𝑖)  (𝐶𝐿𝑘 𝐴 𝐶𝐿𝑗) (Transitivity)

Rule 22: If CLi generalized CLj and CLk aggregates CLj then semantically CLk

aggregates CLi.

𝐼𝑓 (𝐶𝐿𝑖 𝐺 𝐶𝐿𝑗)  (𝐶𝐿𝑘 𝐴 𝐶𝐿𝑗)  (𝐶𝐿𝑘 𝐴 𝐶𝐿𝑖) (Semantically)

Rule 23: If CLi associates CLj and CLj associates CLk then transitively CLi

associates CLk.

𝐼𝑓 (𝐶𝐿𝑖 𝑆 𝐶𝐿𝑗)  (𝐶𝐿𝑗 𝑆 𝐶𝐿𝑘)  (𝐶𝐿𝑖 𝑆 𝐶𝐿𝑘) (Transitivity)

Rule 24: If CLi depends on CLj and CLj depends on CLk then transitively CLi

depends on CLk.

𝐼𝑓 (𝐶𝐿𝑖 𝐷 𝐶𝐿𝑗)  (𝐶𝐿𝑗 𝐷 𝐶𝐿𝑘)  (𝐶𝐿𝑖 𝐷 𝐶𝐿𝑘) (Transitivity)

7- ABSTRACTING CARDINALITY OF CLASS’S RELATIONS

This subsection will present rules for abstracting cardinalities of class’s
relation and the rules will be denoted by CRule. Abstracting cardinalities of
class’s relationship in a class diagram is only needed when dealing with
association or aggregation. It involves component wise multiplication of the
cardinalities of the left-hand sides’ classes and the right-hand side’s classes.
For instance, in CRule 5 to get the cardinality of the first class of the
abstracted relationship, multiply component-wise the cardinality of the first
class on the left hand side with the cardinality of the third class on the left
hand side. The same way, the cardinality of the second class of the
abstracted relation, is obtained by multiplying component-wise the
cardinalities of the second and fourth classes on the left-hand side.

CRule 1:

))(CLA)((CL)(CLA)((CL))(CLA)((CL k

d]*c...b*[a

ik

[c..d]

jj

[a..b]

i 

CRule 2:

))(CLS)((CL)(CLS)((CL))(CLA)((CL k

f]*e...b*[a[c..d]

ik

[e..f][c..d]

jj

[a..b]

i 

CRule 3:))(CLS)((CL)(CLS)((CL))(CLG)((CL k

[c...d][a..b]

ik

[c..d][a..b]

jji 

CRule 4:))(CLA)((CL)(CLA)((CL))(CLG)((CL k

[a..b]

ik

[a..b]

jji 

CRule5:

))(CLS)((CL)(CLS)((CL))(CLS)((CL k

h]*g..d*[cf]*e..b*[a

ik

[g..h][e..f]

jj

[c..d][a..b]

i 

Where the superscripts in the above rules represent the cardinalities of the
class’s relations, and other variables are as defined previously. The
cardinalities of a super class, sub-class and a class with “[1]” cardinality, are
replaced with “[1..1]” cardinality for easy multiplication.

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

52

8- FORMALIZATION OF VERTICAL SEMANTIC
CONSISTENCY RULES OF CLASS DIAGRAM
REFINEMENT

Definition 4: let “HCLD” and “LCLD” be a set of paired classes over class
relations R in a high-level class diagram (HCD) and a low-level class diagram
(LCD) respectively. Also, let “HCL” be a class in the high-level class diagram
(HCD) and “LCL” be class in the low-level class diagram (LCD). Thus, based
on Equation 1:

𝐻𝐶𝐿𝐷 = {< 𝐻𝐶𝐿𝑖 𝑅𝑗 𝐻𝐶𝐿𝑘 > | 𝑖  𝑘, 1 ≤ 𝑖, 𝑘 ≤ 𝑛 𝑍+, 0 ≤ 𝑗 ≤ 5} (5)

𝐿𝐶𝐿𝐷 = {< 𝐿𝐶𝐿𝑖 𝑅𝑗 𝐿𝐶𝐿𝑘 > | 𝑖  𝑘, 1 ≤ 𝑖, 𝑘 ≤ 𝑛 𝑍+, 0 ≤ 𝑗 ≤ 5} (6)
Where

𝐻𝐶𝐿𝑖 , 𝐻𝐶𝐿𝑘 𝐻𝐶𝐷 are classes of the high-level class diagram.

𝐿𝐶𝐿𝑖 , 𝐿𝐶𝐿𝑘 𝐿𝐶𝐷 are classes of the low-level class diagram.

Rj R are possible relations between any two classes in a class diagram.
Proposition 1: A refined class diagram is vertically semantic inconsistent if it
does not satisfy one of CDRRi, for 0≤ i ≤3.

consistentCDRRCDRRCDRR CDCD  321
Based on Definition 1, 2, 3 and 4 established in this chapter, the three vertical
semantic consistency rules CDRR1, CDRR2 and CDRR3 of a class diagram
refinement to be addressed by this research are formulated as follows.

A. Formulation of CDRR1

The first rule CDRR1 states that: Every low-level class refines at most one
high-level class. Thus, based on Definition 4:

nkikimjLHCLLHCL jkji GG  ,1,,1CLCL | (9)

nkikimjLHCLLCLHCL jkji AA  ,1,,1CL | (10)

Where
𝐻𝐶𝐿 = 𝐻𝑖𝑔ℎ − 𝑙𝑒𝑣𝑒𝑙 𝑐𝑙𝑎𝑠𝑠
𝐿𝐶𝐿 = 𝐿𝑜𝑤 − 𝑙𝑒𝑣𝑒𝑙 𝑐𝑙𝑎𝑠𝑠

G = 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑

A = 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑠

B. Formulation of CDRR2

The second rule CDRR2 states that every high-level class has at least one
low-level class, which refines the high-level class: ensures that every high-
level class is refined. Based on Definition 4, class LCLi is said to be a subset
of class HCLj, if and only if a class HCLj generalized class LCLi or class HCLj
aggregate class LCLi.

Thus, If jiij HLCLLHCL G CLCL  (9)

 If jiij HCLLCLLHCL A CL (10)
Also since CLj is a set as mentioned in Equation 4,

Thus, jj CLCL  (A class “CL” is a subset of itself) (11)

Specification of Vertical Semantic Abdulganiyyi, Ibrahim, and AbdulAziz

53

Hence based on Definition 1 and equation 2, 9, 10 and 11, CDRR2 can be
formalized as follow.

  nimjHCLLCLLCDLCLHCDHCL ijji  1 ,1 , |
 (12)

Where
HCD = High-level class diagram.
HCL = High-level class.
LCD = Low-level class diagram.
LCL= Low-level class.

C. Formulation of CDRR3

The third rule CDRR3 states that: The group of relationships between any
two high-level classes must be identical with the group of relationships
between their corresponding low-level classes. This ensures the same
interactions among low-level classes and high-level classes.

The abstraction rules of Section 4.2 will be use to obtain elements of a set
that will be use to check the semantic existence of group of relationships
between any two classes of the high-level class diagram in the low-level class
diagram by converting relationship among any three related classes in the
low-level class diagram to the semantic equivalent relation of two of the
classes. Based on equation 1 and Definition 4, let X be a set that contains the
results obtained after abstracting relations in a low-level class diagram. The
groups of relations in the high-level class diagram are consistent with the
groups of relations in the low-level class diagram if and only if:

𝐻𝐶𝐿𝐷 𝑋 (13)

Where
𝐻𝐶𝐿𝐷 = is the set of paired classes over class relations in the high-
level class diagram.
𝑋 = is the set of paired classes over class relations obtained after
semantic abstraction of the low-level class diagram.

9- CONSISTENCY CHECKING

This section presents an evaluation of the rules formalized in this research.
The evaluation will use two case studies each with two-class diagrams (low-
level and high-level class diagram). The case studies are hotel management
system and passenger list system.

A. Evaluation with a Case Study of Hotel Management System

This section will evaluate the class diagram refinement consistency rules
(CDRR1, CDRR2 and CDRR3) formulated in this research using a case study
of hotel management system. The hotel management system consists of two-
class diagrams, one at analysis stage which is high-level class diagram as
shown in Figure 1 and the other at design stage which is low-level class
diagram as shown in Figure 2.

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

54

Figure 1 - High-Level Class Diagram of Hotel Management System [13]

Figure 2 - Low-Level Class Diagram of Hotel Management System [13]

1) Evaluation of CDRR1

In order to evaluate formal specification of CDRR1, there is a need to check
the consistency of low-level class diagram of Figure 2 with the high-level class
diagram of Figure 1. To achieve this evaluation, the class diagrams need to
be transformed to sets of paired classes over class’s relations using Equation
5 and 6. Then, the two sets are used to check Equation 7 and 8. If, for all
members of the two sets, the two equations are satisfied then it means the
two-class diagrams are consistent with each other with respect to CDRR1.
Otherwise, there is inconsistency between the two-class diagrams.

Recall that CDRR1 states that every low-level class refines at most one high-
level class. From Equation 5, HCLD = {<HCLi Rj HCLk>} and from Equation 6,
LCLD = {<LCLi Rj LCLk> } where HCLD is a set of paired high-level classes

Specification of Vertical Semantic Abdulganiyyi, Ibrahim, and AbdulAziz

55

over class’s relations, HCL1 … HCLn are high-level classes and R1…..Rj are
class’s relations as defined in Equation 3. LCLD is a set of paired low-level
classes and LCL1 … LCLm are classes in the low-level class diagram. Also
recall that Equation 7 is

 nkikimjLHCLLHCL jkji GG  ,1 ,,1CLCL |

In addition, Equation 8 is

nkikimjLHCLLCLHCL jkji AA  ,1 , ,1CL |

From Figure 1

    
    
    
     
























Paymentmakes Guest

,Expensecauses Guest

, Hotelresev Guest

,Hotelstay_at Guest

HCLD =

S

S

S

S

[0..n]

[0..n]

[0..1][0..n]

[0..1][0..n]

 (14)

From Figure 2

    
    
    
    
  
    
    
  
    
    

Expense nTransactio

, Payment nTransactio

,on)(Transacti Account

, Person Account

, Account Person

,(Guest) Person

, Hotel

, Room Hotel

, resev Guest

, Roomstay_at Guest

LCLD =

G

G

A

S

S

G

A

A

S

S

..n][

]..[

]..[

..n][

..n][

]..[..n][

]..[..n][

















































0

10

10

0

0

100

100

nReservatio

nReservatio

 (15)

Note: Expense´ ≡ Expense, Hotel´ ≡ Hotel, Guest´ ≡ Guest and Payment´ ≡
Payment
LCLD (Equation 15) satisfied Equation 7 and 8: No any low-level class that is
a subclass of two high-level classes. Therefore, every low-level class refines
at most one high-level class. Hence, low-level class diagram of hotel
management system in Figure 2 satisfies CDRR1.

2) Evaluation of CDRR2

To check consistency of the given hotel management system case study with
respect to CDRR2, Figure 2 must satisfy Equation 12. In other words, every

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

56

class in the high-level diagram must be in the low-level class diagram and
probably with further refinement. Recall that CDRR2 states that every high-
level class has at least one low-level class, which refines the high-level class:
ensures that every high-level class is refined. Also recall that Equation 12 is:

  nimjHCLLCLLCDLCLHCDHCL ijji  1 ,1 , |

Moreover, from Equation 10, 11, 12, 13, Figure 1 and 2 it can be deduced
that:
For

HotelHotelLCDHotelHCDHotel  | ,

(Based on Equation 12 and 11)
For

HotelRoomRoom Hotel LCDRoomHCD,Hotel A  ,

 (Based on Equation 12 and 10)
For

HotelHotel LCDHCD,Hotel A  nReservationReservatio ,nReservatio

 (Based on Equation 12 and 10)
Hence, For

𝐻𝑜𝑡𝑒𝑙 𝐻𝐶𝐷𝐻𝑜𝑡𝑒𝑙, 𝑅𝑜𝑜𝑚, 𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝐿𝐶𝐷 | 𝐻𝑜𝑡𝑒𝑙  𝐻𝑜𝑡𝑒𝑙,

 𝑅𝑜𝑜𝑚  𝐻𝑜𝑡𝑒𝑙, 𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛  𝐻𝑜𝑡𝑒𝑙

For

GuestGuestLCD Guest HCDGuest |  ,

(based on Equation 12 and 11)
For

𝑃𝑎𝑦𝑚𝑒𝑛𝑡 𝐻𝐶𝐷  𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝐿𝐶𝐷 | 𝑃𝑎𝑦𝑚𝑒𝑛𝑡 𝑃𝑎𝑦𝑚𝑒𝑛𝑡,

(based on Equation 12 and 11).
For

 𝐸𝑥𝑝𝑒𝑛𝑠𝑒 𝐻𝐶𝐷  𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝐿𝐶𝐷 | 𝐸𝑥𝑝𝑒𝑛𝑠𝑒  𝐸𝑥𝑝𝑒𝑛𝑠𝑒

 (based on Equation 12 and 11).

Thus conclusively, each of the classes in the high-level class diagram of the
Hotel Management System of Figure 1 has at least one low-level class that
refined it. Thereby, it satisfied Equation 12 and hence, Figure 2 is consistent
with Figure 1 over CDRR2.

3) Evaluation of CDRR3:

Recall that CDRR3 states that the group of relationships between any two
high-level classes must be identical with the group of relationships between
their corresponding low-level classes. This ensures the existence of similar
interaction of high-level classes in the low-level classes. To check this rule,
there is a need to abstract Equation 15 using the needed rules from Rule 1 to
Rule 24 and CRule 1 to CRule 5 of Chapter 4. The rules are applied iteratively

Specification of Vertical Semantic Abdulganiyyi, Ibrahim, and AbdulAziz

57

to obtain semantically equivalent relations among any three related classes
inform of relation between two of the classes as shown below:
Applying Rule 1 to Rule 24 and CRule 1 to CRule 5 to Equation 15 for the first
time:

   
  (Hotel)stay_at (Guest)

(Room)stay_at (Guest)(Room) (Hotel)

nn

nn

S

SA
]..0[]..0[

]1..0[]..0[]..0[





 (Applying Rule 5 and CRule 2) (16)

   
  (Hotel)resev (Guest)

 on)(Reservatiresev (Guest) on)(Reservati (Hotel)

[0..n][0..n]

[0..1][0..n][0..n]

S

SA





 (Applying Rule 5 and CRule 2) (17)

   
 (Payment) (Account)

on)(Transacti (Account) (Payment) on)(Transacti

[0..n]

[0..n]

A

AG





(Applying Rule 21 and CRule 4) (18)

     (Account) (Guest) (Account)(Person) (Guest)(Person) SSG]1..0[]1..0[

(Applying Rule 12 and CRule 3) (19)

      (Guest) (Account) (Person) (Account) (Guest)(Person) SSG]1..0[]1..0[

 (Applying Rule 13 and CRule 3) (20)

   
 (Expense) (Account)

on)(Transacti(Account) (Expense)on) (Transacti

n

n

A

AG
]..0[

]..0[





 (Applying Rule 21 and CRule 4) (21)

Applying Rule 1 to Rule 24 and CRule 1 to CRule 5 for the second time, to the
results of Equation 18, 19, 20 and 21. Combining the results of Equation 19
and 21:

   
 (Expense) (Guest)

(Account) (Guest) (Expense) (Account)

n

n

S

SA
]..0[

]1..0[]..0[





 (Applying Rule 4 and CRule 2) (22)

Combining the results of Equation 20 and 21:

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

58

   
 ]..0[]1..0[

]1..0[]..0[

(Guest) (Expense)

 (Guest) (Account) (Expense) (Account)

n

n

S

SA





 (Applying Rule 3 and CRule 2) (23)

Combining the results of Equation 19 and 20

   
 

]..0[

]1..0[]..0[

(Payment) (Guest)

(Account) (Guest) (Payment) (Account)

n

n

S

SA





 (Applying Rule 4 and CRule 2) (24)

Combining the results of Equation 19 and 21

   
  (Guest) (Payment)

 (Guest) (Account) (Payment) (Account)

n

n

S

SA
]..0[]1..0[

]1..0[]..0[





 (Applying Rule 3 and CRule 2) (25)

The final abstracted relations are the results of Equation 16, 17, 22, 23, 24,
and 25. Let X be a set that contains these results as in Equation 26.

 
 
 
 
 
  


































(Guest) (Payment)

,(Guest) (Expense)

,(Payment) (Guest)

,(Expense) (Guest)

,(Hotel)resev (Guest)

, (Hotel)stay_at (Guest)

n

n

n

n

nn

nn

S

S

S

S

S

S

]..0[]1..0[

]..0[]1..0[

]..0[

]...0[

]..0[]..0[

]..0[]..0[

= X

 (26)

X is the result of abstracting the low-level class diagram of the Hotel
Management System (Figure 2). For the two diagrams to be consistent,
Equation 13 must be satisfied by verifying that Equation 14 is a subset of
Equation 26 as shown below:

    
    
    
     
























Paymentmakes Guest

,Expensecauses Guest

, Hotelresev Guest

, Hotelstay_at Guest

HCLD =

S

S

S

S

[0..n]

[0..n]

[0..1][0..n]

[0..1][0..n]



Specification of Vertical Semantic Abdulganiyyi, Ibrahim, and AbdulAziz

59

 
 
 
 
 
  
































(Guest) (Payment)

,(Guest) (Expense)

,(Payment) (Guest)

,(Expense) (Guest)

,(Hotel)resev (Guest)

,(Hotel)stay_at (Guest)

n

n

n

n

nn

nn

S

S

S

S

S

S

]..0[]1..0[

]..0[]1..0[

]..0[

]...0[

]..0[]..0[

]..0[]..0[

= X

Note:

   
   
   
   (Payment)makes(Guest) (Payment) (Guest)

(Expense)causes(Guest) (Expense) (Guest)

(Hotel)resev (Guest)(Hotel)resev (Guest)

,(Hotel)stay_at (Guest)(Hotel)stay_at (Guest)

nn

nn

nnn

nnn

SS

SS

SS

SS

]..0[]..0[

]...0[]...0[

]1..0[]..0[]..0[]..0[

]1..0[]..0[]..0[]..0[









Hence, HCLD is a subset of X. This means that the group of relationships
between any two high-level classes in Figure 1 is semantically identical with
the group of relationships between their corresponding low-level classes in
Figure 2. Based on Proposition 1 of Chapter 4, Figure 1 and Figure 2 are
consistent, since they satisfied CDRR1, CDRR2 and CDRR3.

B. Evaluation with a Case Study of Passenger List System

This section will evaluate the class diagram refinement consistency rules
(CDRR1, CDRR2 and CDRR3) formulated in this research using a case study
of passenger list system. The passenger system consists of two class
diagrams, one at analysis stage which is high-level class diagram as shown in
Figure 3 and the other at design stage which is low-level class diagram as
shown in Figure 4.

Figure 3 - High-level class diagram of passenger’s list system [23]

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

60

Figure 4 - Low-level class diagram of passenger’s list system [23]

1) Evaluation of CDRR1

In order to evaluate formal specification of CDRR1, there is a need to check
the consistency of low-level class diagram of Figure 4 with the high-level class
diagram of Figure 3. To achieve this evaluation, the class diagrams need to
be transformed to sets of paired classes over class’s relations using Equation
5 and 6. The two sets will be used to check Equation 7 and 8. If, for all
members of the two sets, the two equations are satisfied then it means the
two-class diagrams are consistent with each other with respect to CDRR1.
Otherwise, there is inconsistency between the two-class diagrams.

Recall that CDRR1 states that every low-level class refines at most one high-
level class. From Equation 5, HCLD = {<HCLi Rj HCLk>} and from Equation 6,
LCLD = {<LCLi Rj LCLk>} where HCLD is a set of paired high-level classes
over class’s relations, HCL1 … HCLn are high-level classes and R1…..Rj are
class’s relations as defined in Equation 3. LCLD is a set of paired low-level
classes and LCL1 … LCLm are classes in the low-level class diagram. Also
recall that Equation 7 is

 nkikimjLHCLLHCL jkji GG  ,1 ,,1CLCL |

In addition, Equation 8 is

nkikimjLHCLLCLHCL jkji AA  ,1 , ,1 CL | .

From Figure 3

        Number)(Flight ,Flight 1
of execution is

**
 with files

* SS FlightCustomerHCLD 

 (27)
From Figure 4

Specification of Vertical Semantic Abdulganiyyi, Ibrahim, and AbdulAziz

61

        

       

























Number)(Flight Flight ,Flight Coupon

,Coupon Ticket ,Ticket Customer
LCLD

1
of execution is

*1
for validis

*

1..41*
owns

1

SS

A S

 (28)

LCLD (Equation 28) satisfied Equation 7 and 8: No any low-level class that is
a subclass of two high-level classes. Therefore, every low-level class refines
at most one high-level class. Hence, low-level class diagram of passenger list
system (Figure 4) satisfies CDRR1.

2) Evaluation of CDRR2

To check consistency of the given passenger list system class diagrams with
respect to CDRR2, Figure 4 must satisfy Equation 12. That is every class in
the high-level diagram must be in the low-level class diagram and probably
with further refinement. Recall that CDRR2 states that: every high-level class
has at least one low-level class, which refines the high-level class: ensures
that every high-level class is refined. Also recall that Equation 12 is:

   nimjHCLLCLLCDLCLHCDHCL ijji  1 ,1 , |

Moreover, from Equation 10, 11, 12, 13, Figure 3 and 4, it can be deduced
that:
For Customer Customer LCD Customer , HCDCustomer

For FlightFlightFlightHCDFlight LCD , 

For

erFlightNumberFlightNumberFlightNumbHCDerFlightNumb LCD , 

Thus conclusively, each of the classes in the high-level class diagram of the
passenger list system (Figure 3) has at least one low-level class that refined it.
Thereby satisfied equation 12 and hence, Figure 4 is consistent with Figure 3
over CDRR2.

3) Evaluation of CDRR3:

Recall that CDRR3 states that the group of relationships between any two
high-level classes must be identical with the group of relationships between
their corresponding low-level classes. This ensures the existence of similar
interaction of high-level classes in the low-level classes. To check this rule,
there is a need to abstract Equation 28 using the needed rules from Rule 1 to
Rule 24 and CRule 1 to CRule 5 in pages 6-8. The rules are applied iteratively
in order to reduce and obtain semantically equivalent relations among any
three related classes inform of relation between two of the classes as shown
below.
Applying Rule 1 to Rule 24 and CRule 1 to CRule 5 to Equation 28:

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

62

        

    Coupon

 Ticket Coupon Ticket

*
owns

1

*
owns

11..41

S

SA

Customer

Customer












(Applying Rule 4 and CRule 5)
(29)

Combining result of Equation 29 with

    Flight Coupon

1
for validis

* S

         
    Flight Customer

Flight Coupon Coupon

*

*

1
for validis

**
owns

1

S

SS



Customer

(Applying Rule 23 and CRule 5) (30)

The results of abstracting Equation 28 are:

  Number)(Flight Flight 1
of execution is

* S
, and the results of Equation 29 and

30. Thus, let X be a set that contains these results.

    
    
  

























Number)(Flight Flight

 ,Flight Customer

,Coupon

1
of execution is

*

**

*
owns

1

S

S

SCustomer

X (31)

X is the result of abstracting the low-level class diagram of the passenger list
system (Figure 4). For the two diagrams (Figure 3 and 4) to be consistent
Equation 13 must be satisfied by verifying that Equation 27 is a subset of
Equation 31 as shown below:

    
  













Number)(Flight Flight

 ,Flight

1
of execution is

*

*
 with files

*

S

SCustomer
HCLD



    
    
  

























Number)(Flight Flight

 ,Flight Customer

 ,Coupon

1
of execution is

*

**

*
owns

1

S

S

SCustomer

X

Note:          Flight Customer Flight

 with files
* SS Customer

Hence, it can be seen that HCLD is a subset of X. This means that the group
of relationships between any two high-level classes in Figure 3 is semantically
identical with the group of relationships between their corresponding low-level
classes in Figure 4. Based on Proposition 1 of Chapter 4, Figure 3 and Figure
4 are consistent, since they satisfied CDRR1, CDRR2 and CDRR3.

Specification of Vertical Semantic Abdulganiyyi, Ibrahim, and AbdulAziz

63

10- SUMMARY AND CONCLUSION

This research addressed three vertical semantic consistency rules of a class
diagram refinement using logical approach. The study used elementary set
theory and some logical terms to establish the formalization. The vertical
semantic consistency rules of class diagram refinement addressed in the
research are: i) Every low-level class refines at most one high-level class, ii)
Every high-level class has at least one low-level class, which refines the high-
level class, and iii) The group of relationships between any two high-level
classes must be identical with the group of relationships between their
corresponding low-level classes. The formalized rules were evaluated using a
case study of hotel management system and were found to be reliable and
useful.

There is a need to implement the formalized rules of this research, integrate it
into a CASE tool and evaluate it performance and result with tools developed
with previous approaches. Moreover, future research should address vertical
semantic and syntactic rules of other UML diagrams using this approach. This
research can also be further enhanced by converting the formalized rules into
knowledge-based language in order to prove it mathematically and provide
automatic detection of semantic inconsistency in UML.

REFERENCE

[1] P. A. Laplante, What Every Engineer Should Know about Software
Engineering. CRC Press, 2007.

[2] P. Ralph and Y. Wand, “A proposal for a formal definition of the design
concept,” in Design requirements engineering: A ten-year perspective,
vol. 14, pp. 103–136, 2009.

[3] M. Gogolla and M. Richters, “Expressing UML Class Diagrams
Properties with OCL,” in Object Modeling with the OCL, Springer-
Verlag Berlin Heidelberg, pp. 85–114, 2002.

[4] T. Winograd, “From Programming Environments to Environments for
Designing,” Commun. ACM, vol. 38, no. 6, pp. 65–74, 1995.

[5] OMG, “Introduction To OMG’s Unified Modeling Language (UML),”
OMG, 2005. [Online]. Available:
http://www.omg.org/gettingstarted/what_is_uml.htm. [Accessed: 08-
Feb-2014].

[6] Y. Zhao, R. Brown, T. R. Kramer, and X. Xu, Information Modeling for
Interoperable Dimensional Metrology. London: Springer London, 2011.

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

64

[7] S. W. Ambler, “UML 2.5: Do You Even Care?,” Dr Dobb’s, 2013.
[Online]. Available: http://www.drdobbs.com/architecture-and-
design/uml-25-do-you-even-care/240163702. [Accessed: 24-Mar-
2014].

[8] F. J. Lucas, F. Molina, and A. Toval, “A systematic review of UML
model consistency management,” Inf. Softw. Technol., vol. 51, no. 12,
pp. 1631–1645, Dec. 2009.

[9] G. Spanoudakis and A. Zisman, “Inconsistency management in
software engineering: Survey and open research issues,” in Handbook
of software engineering and knowledge engineering, vol. 1, World
Science Publisher, pp. 329–380, 2001.

[10] J. Bansiya and C. G. Davis, “A Hierarchical Model for Object-Oriented
Design Quality Assessment,” IEEE Trans. Softw. Eng., vol. 28, no. 1,
pp. 4–17, 2002.

[11] Z. Huzar, L. Kuzniarz, G. Reggio, and J. L. Sourrouille, “Consistency
Problems in UML-Based Software Development,” UML Model. Lang.
Appl., pp. 1–12, 2005.

[12] B. Dobing and J. Parsons, “How UML is used,” Commun. ACM, vol.
49, no. 5, pp. 109–114, 2006.

[13] W. S. W. Shen, K. W. K. Wang, and A. Egyed, “An Efficient and
Scalable Approach to Correct Class Model Refinement,” IEEE Trans.
Softw. Eng., vol. 35, no. 4, pp. 515–533, 2009.

[14] G. Engels, J. M. Küster, R. Heckel, and L. Groenewegen, “A
Methodology for Specifying and Analyzing Consistency of Object-
Oriented Behavioral Models,” ACM SIGSOFT Softw. Eng. Notes, vol.
26, pp. 186–195, 2001.

[15] A. Khalil and J. Dingel, “Khalil, A., & Dingel, J. (2013). Supporting the
evolution of UML models in model driven software development: A
Survey. Technical Report, School of Computing, Queen’s University,
Canada.,” 2013.

[16] D. Torre and M. Genero, “UML Consistency Rules : A Systematic
Mapping Study,” 2014.

[17] V. Lima, C. Talhi, D. Mouheb, M. Debbabi, L. Wang, and M.
Pourzandi, “Formal Verification and Validation of UML 2.0 Sequence
Diagrams using Source and Destination of Messages,” Electron. Notes
Theor. Comput. Sci., vol. 254, pp. 143–160, Oct. 2009.

Specification of Vertical Semantic Abdulganiyyi, Ibrahim, and AbdulAziz

65

[18] G. J. Holzmann and J. Gerard, Design and Validation of Computer
Protocols. Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1990.

[19] H. He, Z. Wang, Q. Dong, W. Zhang, and W. Zhu, “Ontology-Based
Semantic Verification for Uml Behavioral Models,” Int. J. Softw. Eng.
Knowl. Eng., vol. 23, no. 02, pp. 117–145, Mar. 2013.

[20] A. Knapp, T. Mossakowski, and M. Roggenbach, “An Institutional
Framework for Heterogeneous Formal Development in UML,” ArXiv,
pp. 1–15, 2014.

[21] N. Abdulganiyyi and N. Ibrahim, “Semantic Abstraction of Class
Diagram Using Logical Approach,” in Information and Communication
Technologies (WICT), 2014 Fourth World Congress on, pp. 251–256.
IEEE, 2014.

[22] J. R. Shoenfield, Mathematical logic. Natick, Massachusetts:
Association for Symbolic Logic A K Peters, Ltd., 1967.

[23] S. Alexander, F. Gerhard, and P. Marina, “Constructing Class
Diagrams,” SourceMaking, 2015. [Online]. Available:
http://sourcemaking.com/uml/modeling-it-systems/structural-
view/constructing-class-diagrams. [Accessed: 25-Jan-2015].

Int. J. of Software Engineering, IJSE Vol.10 No.2 July 2017

66

