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ABSTRACT 

Unified Modelling Language (UML) is the most popular modelling language 
use for software design in software development industries in which class 
diagram is being the most frequently used diagram. Despite the popularity, 
UML is being affected by inconsistency problems of its diagrams at the same 
or different abstraction levels. To address inconsistency in UML, this research 
has specified twenty-four abstraction rules of class’s relation semantic among 
any three related classes of a refined class diagram to semantically equivalent 
relations of two of the classes using a logical approach. This research has 
also formalized three vertical semantic consistency rules of a class diagram 
refinement identified by previous researchers using a logical approach and the 
set of formalized abstraction rules. The results were successfully evaluated 
using hotel management system and passenger list system case studies and 
were found to be reliable and efficient. 

Keywords- Cardinality Abstraction, Class Diagram, Inconsistency, Logical 

Approach, Semantic Abstraction Rule, UML. 

1- INTRODUCTION 

The increasing dependency on computers and software applications for 
saving lives, properties and time, in our contemporary world has escalated to 
all sectors of human endeavours. Thereby, led to an increase in the demand 
of efficiency and reliability of the computers and the software applications 
before usage, to avoid claims of what they were provided to save (that is: 
lives, properties and time). To ensure efficiency and reliability of software 
applications, software experts have agreed to define the best practice for 
software development, namely software engineering. The discipline of 
software engineering is coined to deal with poor quality of software, get 
projects exceeding time and budget under control. It also ensures that 
software is built systematically, rigorously, measurably, and within 
specification. In other words, software engineering is the study and application 
of engineering to the design, development, and maintenance of software from 
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the start to the end of the development [1]. This research is aimed at 
addressing the inconsistencies of software at the design stage. Design plays a 
central role in the activities that leads to the development or maintenance of 
good software by giving an abstract representation of the system prior to 
development or maintenance. The consistency of the developed or 
maintained system with the user requirement specifications depends mostly 
on the consistency of the design. According to [2], software design is the 
process of realizing software solution to one or more set of problems. 

The largest segment of design phase of software development life cycle is 
creating a consistent design based on a comprehensive model. These days, 
the infrastructures for creating this design are usually based on object-
oriented modelling languages. Unified Modelling Language (UML) is the most 
popular object-oriented modelling language use to model a system in a way 
that the status of the various objects replicate the user’s point of view or 
specification [3]. The modelling task focuses on definitions and descriptions of 
objects, features and actions to be operated by the user during interaction, 
rather than on the programming aspect [4]. 

2- UNIFIED MODELLING LANGUAGE 

The Unified Modelling Language (UML) is a language and notation system 
use to specify, construct, visualize, and document models of software systems 
[5]. It provides sets of diagrams to model structural, behavioural, and 
interaction aspects of an object-oriented system. Each diagram depicts a 
particular design aspect of the system. UML consists of many diagrams 
depending on the version. For example, UML version 2.0 has 13 diagrams [5], 
both UML version 2.2 and 2.4 have 14 diagrams [6] and UML version 2.5 has 
17 diagrams [7].  The presence of many UML diagrams, to model a system, 
brings a variety of views that overlap with respect to information depicted in 
each that can leave overall system design specification in an inconsistent 
state [8].  

3- UML MODEL CONSISTENCY 

Consistency in UML model is a state in which the structures, features and 
elements that appear in a model are compatible and in alignment with 
contents of the model and other related models with respect to requirement 
being modeled and UML meta-model [9]. For example, the structures, 
functions and relations in an initial class diagram obtained during an analysis 
phase of a software development must be compatible with a detailed class 
diagram developed during the design phase of the software development. In 
addition, unambiguous and consistent UML models are necessary for 
successful development of quality Information System (IS) [10]. However, 
UML model is hardly free of inconsistency problems within or with other 
models at the same or different abstraction levels. Inconsistency in UML 
model(s) usually arose due to analysts or designers viewing the same system 
from different points of views. Other possible causes of UML inconsistency are 
iterative process of an IS development, lack of UML knowledge or practice, 
imprecise semantic nature of the UML diagrams, difference in geographical 
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location of developers, and multiple interpretations of user’s requirements and 
UML notations [11]. 

There are two types of consistency problems in UML; vertical and horizontal. 
Vertical and horizontal consistency problems are also classified into syntactic 
and semantic consistency problems. Despite all the challenges of consistency 
uncertainty of UML models, UML is also the most widely used modelling 
language in object-oriented software development industries. Class diagram is 
the most used UML diagram [12]. For this reason, this research will propose a 
formal specification for three vertical semantic consistency rules of class 
diagram refinement identified by [13] using a logical approach. The definitions 
of the types and classifications of consistencies are described as follows. 

3-1   VERTICAL CONSISTENCY  

Vertical consistency in UML is a state of semantic or syntactic compatibility of 
models built at different levels of abstraction such as between a model and its 
refinement. It is also called inter-consistency [11]. For example, an abstract 
class diagram developed in the analysis phase of software development must 
be semantically and syntactically consistent with a detailed class diagram 
developed in the design phase of the software development.  

3-2  HORIZONTAL CONSISTENCY  

Horizontal consistency is a state of semantic or syntactic compatibility of 
models built at the same level of modelling abstractions. It is also called intra-
consistency [11]. For example, a class diagram describing the static aspects 
of an abstract model must be semantically and syntactically consistent with a 
state machine diagram describing the dynamic aspects of the classes in the 
model. 

3-3   SEMANTIC CONSISTENCY  

Semantic consistency is a state that requires models’ behaviours to be 
semantically compatible with one another [14]. For example, a class diagram 
and its refinement must be semantically compatible with each other. Unlike 
syntactic consistency, there is no specific method for specifying semantic 
consistency rules and constraints [15].  

3-4   SYNTACTIC CONSISTENCY 

Syntactic consistency guarantees that a model conforms to abstract syntax of 
the modelling language as specified by its meta-model [14]. For example, in a 
class diagram, the design of each class as well as the relationship between 
them must be syntactically correct in accordance with the class diagram meta-
model. In general, syntactic consistency can be automatically checked and 
therefore is supported by current UML CASE tools [15]. 

4- PROBLEM STATEMENT 

Despite the popularity of UML for object-oriented software modeling in 
software development industries, UML diagrams are being affected by 
inconsistency problems at the same and different modeling abstractions. 
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Inconsistency problems of UML diagrams are the major setback recorded 
affecting modeling with UML.  Solving UML inconsistencies have gained the 
attention of many researchers on how to handle inconsistency in UML, though 
there are limited works in UML vertical semantic inconsistency management 
[8]. In general, syntactic consistency problems can be automatically checked 
and, therefore, are supported by current UML CASE tools [15]. Unlike 
syntactic consistency, there is no specific method for specifying semantic 
consistency rules and constraints [15]. Shen, Wang, & Egyed (2009) identified 
three vertical semantic consistency rules of a class diagram refinement and 
used informal approaches to manage them. The approaches used were 
Integrated Abstraction and Comparison (IAC), and Separated Abstraction and 
Comparison (SAC). These techniques require a significant amount of time and 
memory space in order to handle inconsistencies of a class diagram 
refinement. These are due to the large number of rules check and iterations 
involved in the algorithms. On the contrary, this research will formulate the 
same vertical semantic consistency rules of class diagram refinement 
achieved with SAC and IAC in a more effective and efficient manner using a 
logical approach. 

5- REVIEW OF PREVIOUS WORKS 

Although there are many proposals for enhancing modelling with UML, only a 
few works on UML semantic consistency management [8], [16]. While some of 
the proposals used formal methods to enhance UML modelling and software 
development process, others used informal methods.  Lima et al., (2009) 
proposed a formal verification and validation (V&V) technique to check 
semantic consistency of a sequence diagram. The proposed technique 
generate PROMELA-based model from interactions expressed in a given 
sequence diagram. SPIN model checker is then used to simulate the 
execution and to confirm sequence diagram properties are written in Linear 
Temporal Logic (LTL). The technique was implemented as an Eclipse plug-in, 
with human understandable feedback to the developer. The following 
semantic rules of a sequence diagram were addressed; lifeline that performed 
the last action, the last completed action (sent or received), message used in 
the final action, and lifeline to/from which a message was sent/received. This 
technique is difficult to extend to static components of UML diagrams. 
According to [18], PROMELA is a process modelling language which intended 
use is to verify the logic of parallel systems. In other words, PROMELA can be 
highly suitable for modelling dynamic properties but not static features.   

Shen, Wang, & Egyed (2009) presented two informal methods for checking 
consistency between a class diagram and its refinement at different levels of 
modelling abstractions. The presented techniques were Integrated Abstraction 
and Comparison (IAC), and Separated Abstraction and Comparison (SAC). 
The authors further demonstrated that SAC is highly favourable for 
consistency checking of software models than IAC. The techniques addressed 
three semantic consistency rules of class diagram refinement. The addressed 
rules are stated as follows; (1) every low-level class refines at most one high-
level class, (2) every high-level class has at least one low-level class, which 
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refines the high-level class, and (3) the group of relationships between any 
two high-level classes must be identical with the group of relationships 
between their corresponding low-level classes. The methods were 
implemented and integrated with IBM Rational Rose design tool. 

He et al. (2013) proposed a method of ontology-based semantics confirmation 
of UML behaviour diagrams. The authors divided semantics of behaviour 
diagrams into static and dynamic semantics. The static semantics are defined 
as the notations and constraints in UML behavioural diagrams while the 
dynamic semantics are defined as the semantic relations among the instances 
of the notations while interacting. The static semantics of behavioural 
diagrams are transformed into ontology web language description logic (OWL 
DL) by converting UML behaviour diagrams and their meta-models into a DL 
knowledge base. While the dynamic semantics are specified in DL-Safe rules 
that are then expressed by SWRL (Semantic Web Rule Language) and added 
to the OWL DL ontology. The OWL DL is then used to check both vertical and 
horizontal semantic consistency of activity, sequence, and state diagrams. 

Knapp, Mossakowski, & Roggenbach (2014) proposed a technique called 
institution based heterogeneous approach for checking semantic consistency 
among UML diagrams. The proposed framework can be used to verify 
consistency of different UML diagrams both horizontally and vertically. The 
vertical semantic consistency addressed in the proposal checks whether the 
state machine satisfies an OCL invariant or an OCL pre-/post-condition.  

Abdulganiyyi, N. and Ibrahim, N., (2014) presented abstraction rules of a class 
diagram using a logical approach. The rules were evaluated using only one 
case study of hotel management system.  

However, there are still issues with UML consistency checking and 
management, due to ambiguity of some of the proposed rules, unconformity to 
meta-model of the UML diagram(s), in-extensibility of some of the techniques, 
sometimes meaningless consistency rules proposals as well as impractical 
applicability of the proposed rules [8]. This research will represent the 
abstraction rules of [21] and formalized three vertical semantic consistency 
rules of a class diagram refinement identified by previous researchers using a 
logical approach and the set of formalized abstraction rules of [21]. The 
results will be evaluated with two case studies. 

6- SEMANTIC ABSTRACTION OF CLASS’S RELATION  
USING LOGIC 

Logic is the basis for stating formal proofs in all branches of mathematics [22]. 
This article uses logic to abstract a class diagram through breaking 
relationship between three classes logically to semantic equivalent relation of 
two of the classes. The following definitions will be used to formalize rules for 
abstracting a class diagram. 

Definition 1: Let “CD” be a class diagram that contains a finite set of classes 
“CLs” and a finite set of relations “R” between classes. Thus, it can be defined 
as  
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 𝐶𝐷 =  {< 𝐶𝐿𝑠 >, < 𝑅 >}                (1) 
Where 

 𝐶𝐿𝑠 =  {𝐶𝐿𝑖  |1 ≤  𝑖  ≤  𝑛, 𝑛𝑍+} is a finite set of classes     (2) 
And 

 𝑅 =  {𝐷, 𝐺, 𝐴, A


, 𝑆}                      (3) 
Where 

𝐷 =  {𝑑𝑖  | 0 ≤  𝑖 ≤  𝑞, 𝑞𝑍+} is a finite set of dependencies, 

𝐺 =  {𝑔𝑖  | 0 ≤  𝑖 ≤  𝑝, 𝑝𝑍+} is a finite set of generalization, 

𝐴 =  {𝑎𝑖  | 0 ≤  𝑖 ≤  𝑡, 𝑡𝑍+} is a finite set of bidirectional aggregation, 

A


=  { a


𝑖
 | 0 ≤  𝑖 ≤  𝑢, 𝑢𝑍+} is a finite set of unidirectional aggregation. 

𝑆 =  {𝑠𝑖| 1 ≤  𝑖 ≤  𝑚, 𝑚𝑍+} is a finite set of association.  

Definition 2: Let “CL” be a class in a class diagram, CL consists of a finite set 
of attributes and operations. Thus, it can be defined as: 
𝐶𝐿 =  {𝐴𝑡𝑡𝑟, 𝑂𝑝𝑟}                (4) 
Where  

𝐴𝑡𝑡𝑟 =  {𝑎𝑡𝑡𝑟𝑖  | 0 ≤  𝑖 ≤  𝑘, 𝑘 𝑍+} is a finite set of attributes in a class (CL). 

𝑂𝑝𝑟 =  {𝑜𝑝𝑟𝑖  | 0 ≤  𝑖 ≤  𝑙, 𝑙 𝑍+} is a finite set of operations in a class (CL). 

Definition 3: Let “𝐶𝐿𝑖”, 𝐶𝐿𝑗”, 𝑎𝑛𝑑 “𝐶𝐿𝑘” be classes in a class diagram such that 

𝐶𝐿𝑖 , 𝐶𝐿𝑗 , 𝐶𝐿𝑘 ∈ 𝐶𝐷  for  𝑖 𝑗 𝑘, 1 ≤  𝑖, 𝑗, 𝑘 ≤  𝑛 . let “𝐷”, “𝐺”, “𝐴”, “𝑆”   𝑅  be 

possible relations between any two classes in a class diagram. 
To abstract relationship R among any three related classes in a class 

diagram, the following rules are developed to convert the relationship among 
any three classes: CLi, CLj, and CLk to the semantic equivalent relations of 
two of the classes (CLi and CLj, or CLk and CLi, or CLj and CLk). From 
Equation 1, 3 and 4 the following rules are developed. 
 
Rule 1: If CLi aggregates CLj and CLj aggregates CLk then CLi aggregates CLk 

transitively. 

If (𝐶𝐿𝑖  𝐴 𝐶𝐿𝑗)   (𝐶𝐿𝑗  𝐴 𝐶𝐿𝑘)    (𝐶𝐿𝑖   𝐴 𝐶𝐿𝑘)  (Transitivity) 

Rule 2: If CLi aggregates CLj and CLj associates CLk then transitively CLi 

associates CLk. 

𝐼𝑓 (𝐶𝐿𝑖   𝐴 𝐶𝐿𝑗)   (𝐶𝐿𝑗  𝑆 𝐶𝐿𝑘)    (𝐶𝐿𝑖   𝑆 𝐶𝐿𝑘)  (Transitivity) 

Rule 3: If CLi aggregates CLj and CLi associates CLk then semantically CLj 

associates CLk. 

If (𝐶𝐿𝑖   𝐴 𝐶𝐿𝑗)   (𝐶𝐿𝑖   𝑆 𝐶𝐿𝑘)   (𝐶𝐿𝑗   𝑆 𝐶𝐿𝑘)           (Semantically) 

Rule 4: If CLi aggregate CLj and CLk associate CLi then transitively CLk 

associates CLj. 

  If (𝐶𝐿𝑖   𝐴 𝐶𝐿𝑗)   (𝐶𝐿𝑘   𝑆 𝐶𝐿𝑖)   (𝐶𝐿𝑘   𝑆 𝐶𝐿𝑗)  (Transitivity) 

Rule 5: If CLi aggregate CLj and CLk associate CLj then semantically CLi 

associates CLk. 

If (𝐶𝐿𝑖   𝐴 𝐶𝐿𝑗)   (𝐶𝐿𝑘   𝑆 𝐶𝐿𝑗)   (𝐶𝐿𝑘  𝑆 𝐶𝐿𝑖)           (Semantically) 
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Rule 6: If CLi aggregates CLj and CLj depends on CLk then transitively CLi 

depends on CLk. 

If (𝐶𝐿𝑖   𝐴 𝐶𝐿𝑗)   (𝐶𝐿𝑗  𝐷 𝐶𝐿𝑘)  (𝐶𝐿𝑖  𝐷 𝐶𝐿𝑘)  (Transitivity) 

Rule 7: If CLi aggregates CLj and CLi depends on CLk then semantically CLj 

depends on CLk. 

 𝐼𝑓 (𝐶𝐿𝑖  𝐴 𝐶𝐿𝑗)   (𝐶𝐿𝑖  𝐷 𝐶𝐿𝑘)   (𝐶𝐿𝑗 𝐷 𝐶𝐿𝑘)           (Semantically) 

Rule 8: If CLi aggregate CLj and CLk depend on CLi then transitively CLk 

depend on CLj. 

 𝐼𝑓 (𝐶𝐿𝑖  𝐴 𝐶𝐿𝑗)   (𝐶𝐿𝑘   𝐷 𝐶𝐿𝑖)   (𝐶𝐿𝑘  𝐷 𝐶𝐿𝑗)  (Transitivity) 

Rule 9: If CLi aggregate CLj and CLk depend on CLj then semantically CLk 

depend on CLi. 

  𝐼𝑓 (𝐶𝐿𝑖  𝐴 𝐶𝐿𝑗)   (𝐶𝐿𝑘 𝐷 𝐶𝐿𝑗)  (𝐶𝐿𝑘  𝐷 𝐶𝐿𝑖)           (semantically) 

Rule 10: If CLi generalized CLj and CLj generalized CLk then transitively CLi 

generalized CLk. 

𝐼𝑓 (𝐶𝐿𝑖  𝐺 𝐶𝐿𝑗)   (𝐶𝐿𝑗  𝐺 𝐶𝐿𝑘)  (𝐶𝐿𝑖  𝐺 𝐶𝐿𝑘)  (Transitivity) 

Rule 11: If CLi generalized CLj and CLj associates CLk then transitively CLi 

associates CLk. 

 𝐼𝑓 (𝐶𝐿𝑖  𝐺 𝐶𝐿𝑗)   (𝐶𝐿𝑗  𝑆 𝐶𝐿𝑘)  (𝐶𝐿𝑖  𝑆 𝐶𝐿𝑘)   (Transitivity) 

Rule 12: If CLi generalized CLj and CLi associates CLk then semantically CLj 

associates CLk. 

𝐼𝑓 (𝐶𝐿𝑖  𝐺 𝐶𝐿𝑗)   (𝐶𝐿𝑖  𝑆 𝐶𝐿𝑘)  (𝐶𝐿𝑗  𝑆 𝐶𝐿𝑘)           (Semantically) 

Rule 13: If CLi generalized CLj and CLk associates CLi then transitively CLk 

associates CLj. 

𝐼𝑓 (𝐶𝐿𝑖  𝐺 𝐶𝐿𝑗)   (𝐶𝐿𝑘 𝑆 𝐶𝐿𝑖)  (𝐶𝐿𝑘   𝑆 𝐶𝐿𝑗)  (Transitivity) 

Rule 14: If CLi generalized CLj and CLk associates CLj then semantically CLk 

associates CLi. 

𝐼𝑓 (𝐶𝐿𝑖  𝐺 𝐶𝐿𝑗)   (𝐶𝐿𝑘 𝑆 𝐶𝐿𝑗)  (𝐶𝐿𝑘   𝑆 𝐶𝐿𝑖)           (Semantically) 

Rule 15: If CLi generalized CLj and CLj depends on CLk then transitively CLi 

depends on CLk. 

𝐼𝑓 (𝐶𝐿𝑖   𝐺 𝐶𝐿𝑗)   (𝐶𝐿𝑗   𝐷 𝐶𝐿𝑘)   (𝐶𝐿𝑖   𝐷 𝐶𝐿𝑘)  (Transitivity) 

Rule 16: If CLi generalized CLj and CLi depends on CLk then semantically CLj 

depends on CLk. 

𝐼𝑓 (𝐶𝐿𝑖   𝐺 𝐶𝐿𝑗)   (𝐶𝐿𝑖   𝐷 𝐶𝐿𝑘)  (𝐶𝐿𝑗   𝐷 𝐶𝐿𝑘)               (Semantically) 

Rule 17: If CLi generalized CLj and CLk depends on CLi then transitively CLk 

depends on CLj. 

𝐼𝑓 (𝐶𝐿𝑖   𝐺 𝐶𝐿𝑗)   (𝐶𝐿𝑘   𝐷 𝐶𝐿𝑖)  (𝐶𝐿𝑘   𝐷 𝐶𝐿𝑗)  (Transitivity) 

Rule 18: If CLi generalized CLj and CLk depends on CLj then semantically CLk 

depends on CLi. 

𝐼𝑓 (𝐶𝐿𝑖   𝐺 𝐶𝐿𝑗)   (𝐶𝐿𝑘   𝐷 𝐶𝐿𝑗)  (𝐶𝐿𝑘   𝐷 𝐶𝐿𝑖)           (Semantically) 

Rule 19: If CLi generalized CLj and CLj aggregates CLk then transitively CLi 

aggregates CLk. 

𝐼𝑓 (𝐶𝐿𝑖   𝐺 𝐶𝐿𝑗)   (𝐶𝐿𝑗   𝐴 𝐶𝐿𝑘)  (𝐶𝐿𝑖   𝐴 𝐶𝐿𝑘)  (Transitivity) 

Rule 20: If CLi generalized CLj and CLi aggregates CLk then semantically CLj 

aggregates CLk. 

𝐼𝑓 (𝐶𝐿𝑖   𝐺 𝐶𝐿𝑗)   (𝐶𝐿𝑖   𝐴 𝐶𝐿𝑘)  (𝐶𝐿𝑗   𝐴 𝐶𝐿𝑘)           (Semantically) 
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Rule 21: If CLi generalized CLj and CLk aggregates CLi then transitively CLk 

aggregates CLj. 

𝐼𝑓 (𝐶𝐿𝑖  𝐺 𝐶𝐿𝑗)   (𝐶𝐿𝑘  𝐴 𝐶𝐿𝑖)  (𝐶𝐿𝑘  𝐴 𝐶𝐿𝑗)  (Transitivity) 

Rule 22: If CLi generalized CLj and CLk aggregates CLj then semantically CLk 

aggregates CLi. 

𝐼𝑓 (𝐶𝐿𝑖   𝐺 𝐶𝐿𝑗)   (𝐶𝐿𝑘   𝐴 𝐶𝐿𝑗)   (𝐶𝐿𝑘   𝐴 𝐶𝐿𝑖)           (Semantically) 

Rule 23: If CLi associates CLj and CLj associates CLk then transitively CLi 

associates CLk. 

𝐼𝑓 (𝐶𝐿𝑖  𝑆 𝐶𝐿𝑗)   (𝐶𝐿𝑗 𝑆 𝐶𝐿𝑘)   (𝐶𝐿𝑖  𝑆 𝐶𝐿𝑘)  (Transitivity) 

Rule 24: If CLi depends on CLj and CLj depends on CLk then transitively CLi 

depends on CLk. 

𝐼𝑓 (𝐶𝐿𝑖   𝐷 𝐶𝐿𝑗)   (𝐶𝐿𝑗   𝐷 𝐶𝐿𝑘)   (𝐶𝐿𝑖   𝐷 𝐶𝐿𝑘)  (Transitivity) 

7- ABSTRACTING CARDINALITY OF CLASS’S RELATIONS 

This subsection will present rules for abstracting cardinalities of class’s 
relation and the rules will be denoted by CRule. Abstracting cardinalities of 
class’s relationship in a class diagram is only needed when dealing with 
association or aggregation. It involves component wise multiplication of the 
cardinalities of the left-hand sides’ classes and the right-hand side’s classes. 
For instance, in CRule 5 to get the cardinality of the first class of the 
abstracted relationship, multiply component-wise the cardinality of the first 
class on the left hand side with the cardinality of the third class on the left 
hand side. The same way, the cardinality of the second class of the 
abstracted relation, is obtained by multiplying component-wise the 
cardinalities of the second and fourth classes on the left-hand side.  

CRule 1: 

))(CLA  )((CL  )(CLA  )((CL  ))(CLA )((CL k

d]*c...b*[a

ik

[c..d]

jj

[a..b] 

i   

CRule 2: 

))(CLS   )((CL  )(CLS  )((CL  ))(CLA  )((CL k

f]*e...b*[a[c..d]

ik

[e..f][c..d]

jj

[a..b]

i   

CRule 3: ))(CLS  )((CL  )(CLS  )((CL  ))(CLG  )((CL k

[c...d][a..b]

ik

[c..d][a..b]

jji   

CRule 4: ))(CLA   )((CL )(CLA  )((CL  ))(CLG  )((CL k

[a..b]

ik

[a..b]

jji   

CRule5:  

))(CLS  )((CL )(CLS  )((CL  ))(CLS  )((CL k

h]*g..d*[cf]*e..b*[a

ik

[g..h][e..f]

jj

[c..d][a..b]

i 

 
Where the superscripts in the above rules represent the cardinalities of the 
class’s relations, and other variables are as defined previously. The 
cardinalities of a super class, sub-class and a class with “[1]” cardinality, are 
replaced with “[1..1]” cardinality for easy multiplication.  
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8- FORMALIZATION OF VERTICAL SEMANTIC 
CONSISTENCY RULES OF CLASS DIAGRAM 
REFINEMENT 

Definition 4: let “HCLD” and “LCLD” be a set of paired classes over class 
relations R in a high-level class diagram (HCD) and a low-level class diagram 
(LCD) respectively. Also, let “HCL” be a class in the high-level class diagram 
(HCD) and “LCL” be class in the low-level class diagram (LCD). Thus, based 
on Equation 1:  

𝐻𝐶𝐿𝐷 =  {< 𝐻𝐶𝐿𝑖  𝑅𝑗 𝐻𝐶𝐿𝑘 >  | 𝑖  𝑘, 1 ≤  𝑖, 𝑘 ≤  𝑛 𝑍+, 0 ≤  𝑗 ≤  5}  (5) 

𝐿𝐶𝐿𝐷 =  {< 𝐿𝐶𝐿𝑖  𝑅𝑗 𝐿𝐶𝐿𝑘 >  | 𝑖  𝑘, 1 ≤  𝑖, 𝑘 ≤  𝑛 𝑍+, 0 ≤  𝑗 ≤  5}  (6)  
Where 

𝐻𝐶𝐿𝑖  , 𝐻𝐶𝐿𝑘   𝐻𝐶𝐷 are classes of the high-level class diagram. 

𝐿𝐶𝐿𝑖  , 𝐿𝐶𝐿𝑘  𝐿𝐶𝐷 are classes of the low-level class diagram. 

Rj R are possible relations between any two classes in a class diagram.  
Proposition 1: A refined class diagram is vertically semantic inconsistent if it 
does not satisfy one of CDRRi, for 0≤ i ≤3. 

consistentCDRRCDRRCDRR CDCD  321  
Based on Definition 1, 2, 3 and 4 established in this chapter, the three vertical 
semantic consistency rules CDRR1, CDRR2 and CDRR3 of a class diagram 
refinement to be addressed by this research are formulated as follows. 

A. Formulation of CDRR1  

The first rule CDRR1 states that: Every low-level class refines at most one 
high-level class. Thus, based on Definition 4: 

nkikimjLHCLLHCL jkji GG  ,1,,1CLCL  |              (9) 

nkikimjLHCLLCLHCL jkji AA  ,1,,1CL  |          (10) 

Where  
𝐻𝐶𝐿 =  𝐻𝑖𝑔ℎ − 𝑙𝑒𝑣𝑒𝑙 𝑐𝑙𝑎𝑠𝑠 
𝐿𝐶𝐿 =  𝐿𝑜𝑤 − 𝑙𝑒𝑣𝑒𝑙 𝑐𝑙𝑎𝑠𝑠 

G =  𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 

A  =  𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑠 

B. Formulation of CDRR2 

The second rule CDRR2 states that every high-level class has at least one 
low-level class, which refines the high-level class: ensures that every high-
level class is refined. Based on Definition 4, class LCLi is said to be a subset 
of class HCLj, if and only if a class HCLj generalized class LCLi or class HCLj 
aggregate class LCLi.      

Thus, If jiij HLCLLHCL G CLCL                             (9) 

 If jiij HCLLCLLHCL A CL                       (10) 
Also since CLj is a set as mentioned in Equation 4, 

Thus, jj CLCL  (A class “CL” is a subset of itself)           (11) 
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Hence based on Definition 1 and equation 2, 9, 10 and 11, CDRR2 can be 
formalized as follow. 

  nimjHCLLCLLCDLCLHCDHCL ijji  1 ,1 , |
              (12) 

Where  
HCD = High-level class diagram. 
HCL = High-level class. 
LCD = Low-level class diagram. 
LCL= Low-level class. 

C. Formulation of CDRR3  

The third rule CDRR3 states that: The group of relationships between any 
two high-level classes must be identical with the group of relationships 
between their corresponding low-level classes. This ensures the same 
interactions among low-level classes and high-level classes.  

The abstraction rules of Section 4.2 will be use to obtain elements of a set 
that will be use to check the semantic existence of group of relationships 
between any two classes of the high-level class diagram in the low-level class 
diagram by converting relationship among any three related classes in the 
low-level class diagram to the semantic equivalent relation of two of the 
classes. Based on equation 1 and Definition 4, let X be a set that contains the 
results obtained after abstracting relations in a low-level class diagram. The 
groups of relations in the high-level class diagram are consistent with the 
groups of relations in the low-level class diagram if and only if: 

𝐻𝐶𝐿𝐷 𝑋                             (13) 

Where 
𝐻𝐶𝐿𝐷 = is the set of paired classes over class relations in the high-
level class diagram. 
𝑋 = is the set of paired classes over class relations obtained after 
semantic abstraction of the low-level class diagram. 

9- CONSISTENCY CHECKING 

This section presents an evaluation of the rules formalized in this research. 
The evaluation will use two case studies each with two-class diagrams (low-
level and high-level class diagram). The case studies are hotel management 
system and passenger list system. 

A. Evaluation with a Case Study of Hotel Management System 

This section will evaluate the class diagram refinement consistency rules 
(CDRR1, CDRR2 and CDRR3) formulated in this research using a case study 
of hotel management system.  The hotel management system consists of two-
class diagrams, one at analysis stage which is high-level class diagram as 
shown in Figure 1 and the other at design stage which is low-level class 
diagram as shown in Figure 2. 
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Figure 1 - High-Level Class Diagram of Hotel Management System [13] 

 

 

Figure 2 - Low-Level Class Diagram of Hotel Management System [13] 

 

1) Evaluation of CDRR1  

In order to evaluate formal specification of CDRR1, there is a need to check 
the consistency of low-level class diagram of Figure 2 with the high-level class 
diagram of Figure 1. To achieve this evaluation, the class diagrams need to 
be transformed to sets of paired classes over class’s relations using Equation 
5 and 6. Then, the two sets are used to check Equation 7 and 8. If, for all 
members of the two sets, the two equations are satisfied then it means the 
two-class diagrams are consistent with each other with respect to CDRR1. 
Otherwise, there is inconsistency between the two-class diagrams. 

Recall that CDRR1 states that every low-level class refines at most one high-
level class. From Equation 5, HCLD = {<HCLi Rj HCLk>} and from Equation 6, 
LCLD = {<LCLi Rj LCLk> } where HCLD is a set of paired high-level classes 
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over class’s relations, HCL1 … HCLn are high-level classes and R1…..Rj are 
class’s relations as defined in Equation 3. LCLD is a set of paired low-level 
classes and LCL1 … LCLm are classes in the low-level class diagram. Also 
recall that Equation 7 is  

 nkikimjLHCLLHCL jkji GG   ,1 ,,1CLCL  |       

In addition, Equation 8 is 

nkikimjLHCLLCLHCL jkji AA   ,1 , ,1CL  |       

From Figure 1  

    
    
    
     
























Paymentmakes  Guest

,Expensecauses  Guest

, Hotelresev  Guest

,Hotelstay_at Guest

HCLD = 

S

S

S

S

[0..n]

[0..n]

[0..1][0..n]

[0..1][0..n]

               (14) 

From Figure 2 

    
    
    
    
  
    
    
  
    
    

 

Expense nTransactio

, Payment nTransactio

,on)(Transacti Account

, Person Account

, Account Person

,(Guest) Person

,  Hotel

, Room Hotel

, resev  Guest

, Roomstay_at  Guest

LCLD = 

G 

G 

A 

S 

S 

G 

A 

A 

S

S

..n][

]..[

]..[

..n][

..n][

]..[..n][

]..[..n][

















































0

10

10

0

0

100

100

nReservatio

nReservatio

                (15) 

Note: Expense´ ≡ Expense, Hotel´ ≡ Hotel, Guest´ ≡ Guest and Payment´ ≡ 
Payment  
LCLD (Equation 15) satisfied Equation 7 and 8: No any low-level class that is 
a subclass of two high-level classes. Therefore, every low-level class refines 
at most one high-level class. Hence, low-level class diagram of hotel 
management system in Figure 2 satisfies CDRR1. 

2) Evaluation of CDRR2 

To check consistency of the given hotel management system case study with 
respect to CDRR2, Figure 2 must satisfy Equation 12. In other words, every 
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class in the high-level diagram must be in the low-level class diagram and 
probably with further refinement. Recall that CDRR2 states that every high-
level class has at least one low-level class, which refines the high-level class: 
ensures that every high-level class is refined. Also recall that Equation 12 is:  

  nimjHCLLCLLCDLCLHCDHCL ijji  1 ,1  , |  

Moreover, from Equation 10, 11, 12, 13, Figure 1 and 2 it can be deduced 
that: 
For 

HotelHotelLCDHotelHCDHotel  | ,    

(Based on Equation 12 and 11) 
For 

HotelRoomRoom Hotel LCDRoomHCD,Hotel A   ,    

    (Based on Equation 12 and 10) 
For 

HotelHotel LCDHCD,Hotel A  nReservationReservatio ,nReservatio          

      (Based on Equation 12 and 10)  
Hence, For 

𝐻𝑜𝑡𝑒𝑙 𝐻𝐶𝐷𝐻𝑜𝑡𝑒𝑙, 𝑅𝑜𝑜𝑚, 𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝐿𝐶𝐷 | 𝐻𝑜𝑡𝑒𝑙   𝐻𝑜𝑡𝑒𝑙,    

                                                                         𝑅𝑜𝑜𝑚   𝐻𝑜𝑡𝑒𝑙, 𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛   𝐻𝑜𝑡𝑒𝑙 

For   

GuestGuestLCD Guest HCDGuest |  ,   

(based on Equation 12 and 11) 
For  

𝑃𝑎𝑦𝑚𝑒𝑛𝑡 𝐻𝐶𝐷   𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝐿𝐶𝐷 | 𝑃𝑎𝑦𝑚𝑒𝑛𝑡 𝑃𝑎𝑦𝑚𝑒𝑛𝑡,  

(based on Equation 12 and 11). 
For 

 𝐸𝑥𝑝𝑒𝑛𝑠𝑒 𝐻𝐶𝐷   𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝐿𝐶𝐷 | 𝐸𝑥𝑝𝑒𝑛𝑠𝑒   𝐸𝑥𝑝𝑒𝑛𝑠𝑒  

     (based on Equation 12 and 11). 

Thus conclusively, each of the classes in the high-level class diagram of the 
Hotel Management System of Figure 1 has at least one low-level class that 
refined it. Thereby, it satisfied Equation 12 and hence, Figure 2 is consistent 
with Figure 1 over CDRR2. 

3) Evaluation of CDRR3: 

Recall that CDRR3 states that the group of relationships between any two 
high-level classes must be identical with the group of relationships between 
their corresponding low-level classes. This ensures the existence of similar 
interaction of high-level classes in the low-level classes. To check this rule, 
there is a need to abstract Equation 15 using the needed rules from Rule 1 to 
Rule 24 and CRule 1 to CRule 5 of Chapter 4. The rules are applied iteratively 
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to obtain semantically equivalent relations among any three related classes 
inform of relation between two of the classes as shown below: 
Applying Rule 1 to Rule 24 and CRule 1 to CRule 5 to Equation 15 for the first 
time: 

   
  (Hotel)stay_at  (Guest) 

(Room)stay_at (Guest)(Room) (Hotel) 

nn

nn

S

SA
]..0[]..0[

]1..0[]..0[]..0[

                                                                       

 





  
     (Applying Rule 5 and CRule 2)             (16) 
 

   
  (Hotel)resev  (Guest)                                                                              

 on)(Reservatiresev   (Guest) on)(Reservati (Hotel)

[0..n][0..n]

[0..1][0..n][0..n]

S

SA 





    

   (Applying Rule 5 and CRule 2)             (17) 
 

   
 (Payment)  (Account)                                                                                        

on)(Transacti  (Account) (Payment)  on)(Transacti

[0..n]

[0..n]

A

AG




 

(Applying Rule 21 and CRule 4)           (18) 

     (Account) (Guest)   (Account)(Person)    (Guest)(Person) SSG ]1..0[]1..0[         

(Applying Rule 12 and CRule 3)            (19) 

       (Guest) (Account)  (Person) (Account)  (Guest)(Person) SSG ]1..0[]1..0[   

 
     (Applying Rule 13 and CRule 3)           (20) 

   
 (Expense) (Account) 

on)(Transacti(Account)  (Expense)on) (Transacti

n

n

A

AG
]..0[

]..0[

                                                                   

 




 

    (Applying Rule 21 and CRule 4)          (21) 

Applying Rule 1 to Rule 24 and CRule 1 to CRule 5 for the second time, to the 
results of Equation 18, 19, 20 and 21. Combining the results of Equation 19 
and 21:   

   
 (Expense) (Guest)  

(Account) (Guest)   (Expense)  (Account) 

n

n

S

SA
]..0[

]1..0[]..0[

                                                                    

 



  

    (Applying Rule 4 and CRule 2)           (22) 

Combining the results of Equation 20 and 21:  
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   
                                                                     ]..0[]1..0[

]1..0[]..0[

(Guest)  (Expense) 

  (Guest) (Account)  (Expense) (Account) 

n

n

S

SA




 

    (Applying Rule 3 and CRule 2)             (23) 

Combining the results of Equation 19 and 20  

   
                                                                     

  

]..0[

]1..0[]..0[

(Payment) (Guest)  

(Account) (Guest)   (Payment)  (Account) 

n

n

S

SA




 

       (Applying Rule 4 and CRule 2)              (24) 

Combining the results of Equation 19 and 21  

   
  (Guest)  (Payment) 

 (Guest) (Account)  (Payment) (Account) 

n

n

S

SA
]..0[]1..0[

]1..0[]..0[

                                                                   

 




 

    (Applying Rule 3 and CRule 2)             (25) 

The final abstracted relations are the results of Equation 16, 17, 22, 23, 24, 
and 25. Let X be a set that contains these results as in Equation 26. 

 
 
 
 
 
  


































(Guest)  (Payment)

,(Guest)  (Expense)

,(Payment) (Guest) 

,(Expense) (Guest) 

,(Hotel)resev  (Guest)

, (Hotel)stay_at  (Guest)

 

n

n

n

n

nn

nn

S

S

S

S

S

S

]..0[]1..0[

]..0[]1..0[

]..0[

]...0[

]..0[]..0[

]..0[]..0[

= X    

           (26) 

X is the result of abstracting the low-level class diagram of the Hotel 
Management System (Figure 2). For the two diagrams to be consistent, 
Equation 13 must be satisfied by verifying that Equation 14 is a subset of 
Equation 26 as shown below: 

    
    
    
     
























Paymentmakes  Guest

,Expensecauses  Guest

, Hotelresev  Guest

, Hotelstay_at Guest

HCLD = 

S

S

S

S

[0..n]

[0..n]

[0..1][0..n]

[0..1][0..n]

 


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 
 
 
 
 
  
































(Guest)  (Payment)

,(Guest)  (Expense)

,(Payment) (Guest) 

,(Expense) (Guest) 

,(Hotel)resev  (Guest)

,(Hotel)stay_at  (Guest)

 

n

n

n

n

nn

nn

S

S

S

S

S

S

]..0[]1..0[

]..0[]1..0[

]..0[

]...0[

]..0[]..0[

]..0[]..0[

= X    
 

 
Note: 

   
   
   
   (Payment)makes(Guest) (Payment) (Guest) 

(Expense)causes(Guest) (Expense) (Guest) 

(Hotel)resev (Guest)(Hotel)resev (Guest)

,(Hotel)stay_at  (Guest)(Hotel)stay_at  (Guest)

nn

nn

nnn

nnn

SS

SS

SS

SS

]..0[]..0[

]...0[]...0[

]1..0[]..0[]..0[]..0[

]1..0[]..0[]..0[]..0[

  

  

  

 









 

Hence, HCLD is a subset of X. This means that the group of relationships 
between any two high-level classes in Figure 1 is semantically identical with 
the group of relationships between their corresponding low-level classes in 
Figure 2. Based on Proposition 1 of Chapter 4, Figure 1 and Figure 2 are 
consistent, since they satisfied CDRR1, CDRR2 and CDRR3. 

B. Evaluation with a Case Study of Passenger List System 

This section will evaluate the class diagram refinement consistency rules 
(CDRR1, CDRR2 and CDRR3) formulated in this research using a case study 
of passenger list system. The passenger system consists of two class 
diagrams, one at analysis stage which is high-level class diagram as shown in 
Figure 3 and the other at design stage which is low-level class diagram as 
shown in Figure 4. 

 
 
 
 
 
 
 
 
 
 

 

 

Figure 3 - High-level class diagram of passenger’s list system [23] 
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Figure 4 - Low-level class diagram of passenger’s list system [23] 

1) Evaluation of CDRR1  

In order to evaluate formal specification of CDRR1, there is a need to check 
the consistency of low-level class diagram of Figure 4 with the high-level class 
diagram of Figure 3. To achieve this evaluation, the class diagrams need to 
be transformed to sets of paired classes over class’s relations using Equation 
5 and 6. The two sets will be used to check Equation 7 and 8. If, for all 
members of the two sets, the two equations are satisfied then it means the 
two-class diagrams are consistent with each other with respect to CDRR1. 
Otherwise, there is inconsistency between the two-class diagrams. 

Recall that CDRR1 states that every low-level class refines at most one high-
level class. From Equation 5, HCLD = {<HCLi Rj HCLk>} and from Equation 6, 
LCLD = {<LCLi Rj LCLk>} where HCLD is a set of paired high-level classes 
over class’s relations, HCL1 … HCLn are high-level classes and R1…..Rj are 
class’s relations as defined in Equation 3. LCLD is a set of paired low-level 
classes and LCL1 … LCLm are classes in the low-level class diagram. Also 
recall that Equation 7 is 

 nkikimjLHCLLHCL jkji GG   ,1 ,,1CLCL  |      

In addition, Equation 8 is  

nkikimjLHCLLCLHCL jkji AA   ,1 , ,1 CL |     . 

From Figure 3 

        Number)(Flight   ,Flight 1
of execution  is

**
 with files

* SS FlightCustomerHCLD 

                (27) 
From Figure 4 
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        

       

























Number)(Flight  Flight ,Flight  Coupon

,Coupon Ticket ,Ticket Customer
LCLD

1
of execution  is

*1
for  validis

*

1..41*
owns 

1

SS

A S

            (28) 
 
LCLD (Equation 28) satisfied Equation 7 and 8: No any low-level class that is 
a subclass of two high-level classes. Therefore, every low-level class refines 
at most one high-level class. Hence, low-level class diagram of passenger list 
system (Figure 4) satisfies CDRR1. 

2) Evaluation of CDRR2 

To check consistency of the given passenger list system class diagrams with 
respect to CDRR2, Figure 4 must satisfy Equation 12. That is every class in 
the high-level diagram must be in the low-level class diagram and probably 
with further refinement. Recall that CDRR2 states that: every high-level class 
has at least one low-level class, which refines the high-level class: ensures 
that every high-level class is refined. Also recall that Equation 12 is:  

   nimjHCLLCLLCDLCLHCDHCL ijji  1 ,1 , |  

Moreover, from Equation 10, 11, 12, 13, Figure 3 and 4, it can be deduced 
that: 
For Customer   Customer  LCD Customer   , HCDCustomer  

For FlightFlightFlightHCDFlight     LCD    ,   

For 

erFlightNumberFlightNumberFlightNumbHCDerFlightNumb     LCD    ,   

Thus conclusively, each of the classes in the high-level class diagram of the 
passenger list system (Figure 3) has at least one low-level class that refined it. 
Thereby satisfied equation 12 and hence, Figure 4 is consistent with Figure 3 
over CDRR2. 

3) Evaluation of CDRR3: 

Recall that CDRR3 states that the group of relationships between any two 
high-level classes must be identical with the group of relationships between 
their corresponding low-level classes. This ensures the existence of similar 
interaction of high-level classes in the low-level classes. To check this rule, 
there is a need to abstract Equation 28 using the needed rules from Rule 1 to 
Rule 24 and CRule 1 to CRule 5 in pages 6-8. The rules are applied iteratively 
in order to reduce and obtain semantically equivalent relations among any 
three related classes inform of relation between two of the classes as shown 
below. 
Applying Rule 1 to Rule 24 and CRule 1 to CRule 5 to Equation 28: 
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        

    Coupon  

 Ticket   Coupon Ticket

*
owns 

1

*
owns 

11..41

S

SA 

Customer

Customer











 

(Applying Rule 4 and CRule 5)                 
(29) 

Combining result of Equation 29 with 

 
    Flight  Coupon

1
for  validis

* S
 

         
    Flight Customer                                                                            

Flight  Coupon  Coupon  

*
 

*

1
for  validis

**
owns 

1

S

SS



Customer
 

(Applying Rule 23 and CRule 5)  (30) 

The results of abstracting Equation 28 are: 

  Number)(Flight  Flight 1
of execution  is

* S
, and the results of Equation 29 and 

30. Thus, let X be a set that contains these results. 

 

    
    
  

























Number)(Flight  Flight

 ,Flight  Customer 

,Coupon 

   

1
of execution  is

*

**

*
owns 

1

S

S

SCustomer

X       (31) 

X is the result of abstracting the low-level class diagram of the passenger list 
system (Figure 4). For the two diagrams (Figure 3 and 4) to be consistent 
Equation 13 must be satisfied by verifying that Equation 27 is a subset of 
Equation 31 as shown below: 

    
  













Number)(Flight  Flight

 ,Flight 

1
of execution  is

*

*
 with files

*

S

SCustomer
HCLD

 


 

    
    
  

























Number)(Flight  Flight

 ,Flight  Customer

 ,Coupon 

   

1
of execution  is

*

**

*
owns 

1

S

S

SCustomer

X  

Note:          Flight  Customer  Flight 
***

 with files
* SS Customer  

Hence, it can be seen that HCLD is a subset of X. This means that the group 
of relationships between any two high-level classes in Figure 3 is semantically 
identical with the group of relationships between their corresponding low-level 
classes in Figure 4. Based on Proposition 1 of Chapter 4, Figure 3 and Figure 
4 are consistent, since they satisfied CDRR1, CDRR2 and CDRR3. 
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10- SUMMARY AND CONCLUSION 

This research addressed three vertical semantic consistency rules of a class 
diagram refinement using logical approach. The study used elementary set 
theory and some logical terms to establish the formalization.  The vertical 
semantic consistency rules of class diagram refinement addressed in the 
research are: i) Every low-level class refines at most one high-level class, ii) 
Every high-level class has at least one low-level class, which refines the high-
level class, and iii) The group of relationships between any two high-level 
classes must be identical with the group of relationships between their 
corresponding low-level classes. The formalized rules were evaluated using a 
case study of hotel management system and were found to be reliable and 
useful. 

There is a need to implement the formalized rules of this research, integrate it 
into a CASE tool and evaluate it performance and result with tools developed 
with previous approaches. Moreover, future research should address vertical 
semantic and syntactic rules of other UML diagrams using this approach. This 
research can also be further enhanced by converting the formalized rules into 
knowledge-based language in order to prove it mathematically and provide 
automatic detection of semantic inconsistency in UML.  
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