

Patching: A Requirement for Complete
Software Testing

Adarsh Anand (1), Subhrata Das (2), Ompal Singh (3)

(1) Department of Operational Research.University of Delhi (India)
E-mail: adarsh.anand@gmail.Com

(2) Department of Operational Research.University of Delhi (India)

E-mail: shus.das@gmail.Com

(3) Department of Operational Research.University of Delhi (India)

E-mail: drompalsingh1@gmail.Com

ABSTRACT

If any of the essentials for software testing (test strategy, testing plan, test
cases, and test environment) is missing or inadequate, testing effort is most
likely to fall short of what could have otherwise been achieved. Every product
release in today’s time shall meet a desired level of quality, and release pro-
cesses undergo continual fine-tuning. One such aspect of this tuning comes
from the concept of patching. Patching helps in no roll back policy for the bro-
ken or distorted releases and thus lays a helping hand in monitoring the quali-
ty of software. These software update ideology has undoubtedly helped in
effectively improving usability and performance for software system. With this
concept come two groups; tester and user who detect the defect (if any) in the
software while it is in the operational stage. Inculcating this varied aspect, we
propose an approach based on differing performance of tester and users dur-
ing pre and post release of the software. The model has been validated on
software failure data sets.

Keywords: Patching, Reliability, Software Testing, User.

1- INTRODUCTION

The function and market of software in the present era is escalating where
merchandise gets incorporated and firms utilize networks for business
manoeuver and infringement of security is major issue. For bug free operation
software development and testing teams act pivotal in determining reliability
and quality of the same. During the course of development of software rigor-
ous testing plays important role in quality check. Logically only bug free soft-
ware should be released in the marketplace. The synchronization of the actual
bugs in the product and how the developers put efforts to debug after release
is the end quality experience. The end product is the result of various phases
in the development of the software. With the advancement of technology and
the growth of internet, the role of software has apprehended a foremost shape
of business activities as well as in our daily life. As software becomes a crucial
part of our very high quality life, its failures are even more severe. Tremen-
dous media reports are available on software failures. The following are some

Patching: A Requirement for Complete Software Testing Anand, Das, and Singh

3

well-known examples in recent years: in 2001, Nike Inc. suffered a loss of
$100 million (USD) contributed by the supply chain management software
system; in 2004, Ford Motor Co. lost approximately $400 million (USD) due to
the software purchasing system and Hewlett-Packard Co. lost $160 million
(USD) with a flaw in its ERP system [1]. The brutal competition between soft-
ware firms imposes pressure on software developers to come up with their
product in a short duration. Therefore firms are releasing their product earlier
in the marketplace. Because of this reason, some known and unknown bugs
remain at the time of software release. Thus, software testing holds utmost
importance to improve the quality of the product.

The five core elements of testing are: test strategy, testing plan, test cases,
test data and test environment. They help the firms in enhancing the
effectiveness and efficiency of testing. The objective of test strategy indicates
what kind of testing will work best towards making bug free software. Testing
plan is simply that part of the project which deals with the testing tasks. It
explains about who will do which tasks, when to start, when to end, how much
efforts will be required and finding out other tasks on which it depends. Test
cases are developed based on prioritized needs and acceptance criteria of the
software, keeping in mind the customer’s prominence on quality and risk
assessment. Test data development and test case development are done
simultaneously. In order to execute test cases testing team need to judiciously
and systematically use the test data. Choosing the right environment is a part
of testing plan and so should be selected beforehand [2].

One of the main questions to be answered on every software development is
– how long testing should be done in order to ensure the software is reliable?
It is too often that the testing phase is rushed and the software gets released
with an unacceptable level of faults. On the other hand, it is likely to have di-
minishing yields while prolonging the testing past a certain point. In general,
there may be a time point in life of the software where the profit earned in re-
leasing it is greater than the value earned by continuing testing activities. With
the aim of attaining more profit most commercial software are shipped early
and are known to contain faults. Normally a firm tries to improve the quality of
the software after its release by means of patching or updates. The final call
on quality experienced by the end users is the proportion of the faults in the
software when it get released and the frequent provision of patching and up-
dates from the vender’s end.

Patching is nothing but a piece of code in which designed software would en-
able updating or fixing and improvement of computer program. Patches also
known as bug fixers which include fixing of security susceptibility and other
bugs and also contribute to the performance. It is considered to be a rapid-
repair job of a tester [3]. Bug-fixer is considered to be an instant solution mak-
er available to the consumer; sometimes it can be downloaded from the web-
site of software maker. From this, product developers find out an enhanced
quality of their product. Recent trend has been seen in smart phones and anti-
virus products, from time to time the applications ask for updates. These up-

Int. J. of Software Engineering, IJSE Vol.11 No.1 January 2018

4

dates are provided by developers to counter effect the lurking faults.

In this paper, we intend to study the concept of patching; for which the users
are acting as a supportive hand. Firstly, the testing team investigates and re-
moves the bugs throughout the planning horizon so as to fulfill user’s need of
satisfactory product. At the same time the firms wish to provide maintenance
of the software even after its release and also provide users with updates. As
soon as any bug is encountered by tester or user, errors are debugged and
updates are provided by the developers. The remainder of this article is struc-
tured as follows: The background and theoretical framework is discussed in
section 2. Notations are presented in section 3 whereas the modeling frame-
work is employed in section 4 which provides fault removal process incorpo-
rating the concept of patching. Data analysis is presented in section 5. Con-
clusion and acknowledgement are supplemented in last sections.

2- BACKGROUND AND THEORITICAL FRAMEWORK

Numerous software reliability growth models have been proposed in the
literature under particular set of assumptions based on Non-homogeneous
Poisson Process (NHPP) [4, 5, 6]. Also there are various type of models
based on the concept of perfect debugging environment, which means
whenever developing team is removing detected bugs, it is removed perfectly
and no new bugs are generated. The parsimonious model in the field of
software reliability was proposed by Goel and Okumoto in the year 1979 [7].
Further, Yamada et al. [8] developed a software reliability growth model as
two stage process incorporating the time lag between failure observation and
correction i.e. the delayed S-shaped model. There are some other models
based on this concept such as: Ohba model [9], Bittanti model [10] and Kapur
& Garg model [11]. But in reality, it is not possible to remove each and every
fault perfectly due to complexities in the software system. Thereafter, most of
the researchers have extended their work by using some realistic issues such
as imperfect debugging, error generation, testing effort, testing coverage,
change point, learning phenomena of software developers and fault severity
etc. [4, 5, 6, 12, 13]. Also, to satisfy customer’s need and meet the competitive
edge, enhancing the features of the existing products by the developers is
mandate. So, in later years, Kapur et al. [14] have contributed to the literature
by proposing a multi up-gradation software reliability model. Working on the
same line Singh et al. [15] proposed a successive release model in which fault
removal phenomena of new release depends upon just previous release. A
release time problem based on multi attribute theory was proposed by Singh
et al. [16, 17]. Further the work has been extended to different attributes by
Singh et al. [18]. Some studies have focused on multi up-gradation models
considering the impact of fault severity, imperfect debugging environment,
uncertainty, and release time problem etc. [19, 20, 21, 22, 23]. Recently,
Anand et al. [24] formulated the generalized framework for fault removal
phenomenon using different distributions based on the concept of up-
gradation of the features and undetected faults from operational phase of
preceding releases. Moreover, this concept has been extended using severity
of faults in operational phase by Anand et al. [25].

Patching: A Requirement for Complete Software Testing Anand, Das, and Singh

5

In the entire list of conventional models, researchers have talked about testing
phase of the software before release. If we test the software after the release,
usability and performance of software will improve and it will also extend the
time period of testing. Keeping the software under testing environment even
after the release of software is termed as patching. The study by Jiang and
Sarkar has focused on a software release time problem incorporating the
concept of patching [26]. Recent study by Das et al. [27] defined a
mathematical approach for fault removal phenomena considering the idea of
patching and used convolution probability function to study the joint effort of
tester and user. Further, they depicted the economic significance of the
model. Anand et al. [28] developed a scheduling policy for a software product
using the concept of patching that makes the system more cost effective.
Considering the above mention aspects of patching, here we have studied the
time of release and the time at which the testing is stopped. We have
proposed a fault removal phenomenon which is able to compute the bugs
which are debugged in In-house testing as well as in the field testing.

 3-NOTATIONS

 F t Probability distributions function for fault removal process.

 f t Probability density function

 m t Expected number of faults removed by time t .

a Total number of faults in the software.

1b Fault detection/correction rate of tester before release of software.

2b Fault detection/correction rate of tester after release of software.

3b Fault detection/correction rate of user after release of software.

 Software release Time.
T Testing stop time.

4- MODELING FRAMEWORK

The role of software testers is integral in the creation of the software and are
involved in the quality assurance stage. Generally they conduct manual
testing and perform different combinations of test cases so as to insure that it
is bug free. The major aim of testing process is to check the software for its
quality in terms of highest possible level of reliability. In general, as soon as
firms release the product they start upgrading in terms of launching its multiple
releases. But recently a different trend has been visualized like in the case of
anti-viruses, firms keep on providing the user significant updates of the
software in terms of patches to make it adaptable for newly developed
malicious activities or overcome weak area of the software. The weak areas
can be the code of software containing some bugs or the zones from which
the software security can be bypassed.

Before explaining the mathematical modeling framework incorporating
patching, an important concept called unification is essential to discuss. This
methodology presents a generic approach of taking different forms of  F t , to

Int. J. of Software Engineering, IJSE Vol.11 No.1 January 2018

6

define different fault removal phenomena that exist in literature [4]. The mean
value function of the software reliability growth model can be represented as
[4]:

   
    

1
 


dm t f t

a m t
dt F t

 (1)

where
 
 1

f t

F t
 is the failure correction rate per remaining faults or hazard rate

function. This function shows the picture of failure changes over the systems
[4].

Solving the (1) using boundary conditions (0) 0m t   , we obtain [28]

   .m t a F t , 0 t   (2)

Equation (2) represents the cumulative number of faults removed by time t .
The expression written in (2) has wide range of acceptance in software relia-
bility literature. As stated earlier; the concept of unification approach [28] has
been utilized for deducing the fault count in the system.

Figure 1. Testing Process [27]

Let us assume that the release time of the software as ' ' is different from the
time at which software firm wish to stop the testing of the software at ' 't . That
is, we have considered that software is release in field prior to the time till
which the debugging activity is performed. We have divide the testing period
into two time intervals  0, and  ,T depicting the time the software was in

testing process before and after its release respectively. In the period of
release, the testers are the only debuggers who are directly or indirectly
involved in finding and fixing the bugs while, after release the users are
continuously using the software and it might be the case that they
encountered some flaws and report to the firms. As soon as bug is reported
by users, debugging team may remove the faults and simultaneously provide
patches. Here again comes the role of testers in debugging the reported bugs
(see fig. 1). Patching is the practice of making corrections in the source code
which fix the bugs encountered while using the software. It is a solution to
common problems that may exist in the real time environment which have led
to increased usage.

Patching: A Requirement for Complete Software Testing Anand, Das, and Singh

7

Since  m t follows NHPP; we assume that the new removal function which is

actually combination of time intervals; also follows NHPP criteria. Further, as a
part of assumption, we assume that the removal function behaves
exponentially, in order to state that as and when the bugs are detected, they
are perfectly removed [4]. So making use of (2) the mean value function
in  0, can be given as follows:

     1
1 1 1 bm aF a e      (3)

After time point , the software is released in the field and users start using
the product and there might be case when users come across some loop
holes. Thus, users are actively involved in the debugging process; although
testers are available throughout the testing process. For this very reason, we
have assumed that tester and user are in debugging process from onwards.

Assuming that the rate of fault detection/ correction by user as  UF t  , the

number of removal during a small time interval  ,t t can be expressed as:

     . .T T UA F t F t F t      (4)

where  . 1A a F     represents the count of fault latent in the software after

its release.

Hence, the instantaneous rate of debugging by the user at time t , denoted by

 u t can be given by

 
   

 

   
0

.
lim

. .

T T

U

T U

A F t F t
u t F t

A f t F t











    

 
 (5)

where  Tf t is the derivative of  TF t and represents the removal rate of testers

at time t . Hence, the cumulative number of faults removed by timeT can be
given by

     .
T

T UU T A f t F t dt


  (6)

It is to note that, along with detection from users, testers are also involved in
defect detection process. Therefore, number of faults that will be removed by
testers in  ,T is some proportion of faults which were leftover by testers in

the period  0, and faults not reported by the users in the planning

Int. J. of Software Engineering, IJSE Vol.11 No.1 January 2018

8

horizon  ,T . The novelty lies here that when user encounter some faults it

reports back to the testers which in turn work on it and patches are issued to
overcome such situations. The problems left unnoticed by the users are han-
deled by the testing fraterinity who regularly keep a track on the software even
post release.

Inculcating the concept of firms coming up with patch post their software re-
lease, the cumulative number of remaining faults becomes  A U t   instead

of A (to be debugged by tester). Here it is to be noted that  U t stands for

number of faults identified by users at any time point ' 't . Upon further
analysis, it may be concluded that the efficiency of tester is always higher than
that of the user during the fault detection process. So we define a multiplier for
defining the tester’s efficiency being dependent on user’s detection rate. Note
that,  UF t - represents the removal rate of users after time ' ' , who are

actively participating in defect detection activity. The multiplier is designed in
such a manner that tester’s efficiency is comparatively higher than that of the
user. Thus number of faults removed by tester at some time point ' 't can be
modeled as given by:

     
 

 

   

.
.

. .

T
U

T U

A F t
w t A U t f t

A U t

A F t f t





       
 

 (7)

And its cumulative form is as follows:

     .
T

T UW t A F t f t dt


  (8)

Here, our analysis is more focused in modeling the defects detected under the
post release testing of the software and it is a part of assumption that as soon
as defects are detected corresponding patches are issued and fixed by the
firms. Thus, cumulative number of defects detected by testers and users after
the release of the software is given:

   

       . . .
T

T U T U

U T W T

A f t F t F t f t dt


 



     
 (9)

Equation (9) represents the number of bugs fixed during the period in which
the firm provide patches according to users report and result of testers’ detec-
tion process.

Patching: A Requirement for Complete Software Testing Anand, Das, and Singh

9

Therefore, total number of faults during the planning horizon    0, ,and T 

which comprises of faults removed prior to release and left over faults that are
dealt by testers and users together can be mathematically described as
follows:

 
 

       

. ;

. . . ;

T

T

T U T U

a F T

m T
A f t F t F t f t dt T



 

  

 


 
      




 (10)

Equation (10) can be rewritten as:

 
 

      
. ;

. 1 . . ;

T

T T U

a F T
m T

a F F T F T T

 

  

  
  

 (11)

Equation (11) presents a methodical approach to quantify the number of faults
that are debugged before and after its release in the field, where after the
release of the software efforts applied by users also facilitate in testing
process.

5- DATA ANALYSIS

The proposed methodology is examined taking into consideration the concept
of patching. To validate the proposed methodology, we have made use of two
data sets, first data set (DS-I) collected from Tandem Computers [29] whereas
second data set was presented by Musa et al. [30] and estimated the param-
eters using non linear least square by software package SAS. The estimated
value of total number of faults for DS-I i.e. a=103.0139 (actual number of total
faults are 100), the rate by which tester debug the software before release
i.e.b1=0.105654, the rate by which testers debug the software after release
i.e.b2=0.231635 and the rate by which users are rigorously involved in debug-
ging process of the software after release i.e.b3=0.274044. Similarly for DS-II,
the estimated value of total number of faults i.e.a=179.552 (actual faults are
136), the rate of fault removal before release of the software i.e.b1=0.01 and
the rate of fault removal after release of the software by tester and user
i.e.b2=0.1385 and b3=0.1662.

Table 1. Comparison Criteria for DS-I & DS-II

 SSE MSE RMSE R-Square Adj.R-Square

DS-I 65.8041 4.1128 2.028 0.996 0.9952

DS-II 468.6 26.0342 5.1024 0.9906 0.9895

From table 1, it clearly indicates that this model fits well to the given data set
as the values of SSE, MSE, and RMSE are significantly low and the value of

Int. J. of Software Engineering, IJSE Vol.11 No.1 January 2018

10

co-efficient of determination  2R and 2Adj R is closer to 1. The goodness of fit
curve shows the little discrepancy between the actual and observed values
and the fault removal phenomenon is captured appropriately in the developed
methodology as shown in fig. (2) and fig. (3).

Figure 2. Goodness fit curve for the proposed methodology for DS-I

Figure 3. Goodness fit curve for the proposed methodology for DS-II

6- CONCLUSION

Due to the globalized nature of the market, the software industry is becoming
competitive; also the repute of any software firm is related to its quality. Thus
software engineers are keenly considering and studying the requisites of vari-
ous software testing right from planning, strategizing, testing cases to testing
environment, from the very beginning. The testing endeavour would seem to fall
short in case any of the five rudiments (test strategy, testing plan, test cases,
test data and test environment [2]) is missed or insufficient. Providing extended
testing is a measure of quality which can be attained by providing patches to the

Patching: A Requirement for Complete Software Testing Anand, Das, and Singh

11

users. In the present article, we have incorporated the concept of patching;
which has led to the creation of new aspect in the testing of entire arena of
software system. This concept increases the total fault removal rate as both
testers and users are using and debugging the latent faults present in the soft-
ware. Thus a software reliability growth model based on their differing perfor-
mance is formulated during testing and operational phase of software develop-
ment life cycle. The results obtained are very promising.

ACKNOWLEDGMENT

The research work presented in this paper is supported by grants to the first
author from University of Delhi R&D Grant No. RC/2015/9677, Delhi, India
and third author from DST via DST PURSE phase II, India. Further the au-
thors would like to thank the reviewers for suggesting qualitative changes in
the paper.

REFERENCES

[1] R. N. Charette, “Why Software Fails”, http://spectrum.ieee.org/, July,
2015.

[2] D. L. Brown, “Five Essentials for Software Testing”, www.isixsigma.com,
December 20, 2015.

[3] J. Dadzie, “Understanding Software Patching”, ACM Queue, 3(2), March
2005.

[4] P. K. Kapur, H. Pham, A. Gupta, and P. C. Jha, “Software Reliability As-
sessment with OR Application”, Springer, Berlin, 2011.

[5] P. K. Kapur, R. B. Garg, and S. Kumar, “Contributions to Hardware and
Software reliability”, World Scientific Publishing Co. Ltd: Singapore, 1999.

[6] H. Pham, “System Software Reliability”, Springer-Verlag, 2006

[7] A. L. Goel, and K. Okumoto, “Time Dependent Error Detection Rate Mod-
el for Software Reliability and other Performance Measures”, IEEE Trans-
action Reliability, R-28(3), 206-211, 1979.

[8] S. Yamada, M. Ohba, and S. Osaki, “S-shaped Software Reliability
Growth Models and their Applications,” IEEE Trans. on Reliability, 1984,
Vol. 33, no. 4, pp. 289–292, 1984.

[9] M. Ohba, “Inflection S-shaped Software Reliability Growth Models”, in: S.
Osaki, Y. Hatoyama (Eds.), Stochastic Models in Reliability Theory,
Springer, Berlin, 144-162, 1984.

[10] S. Bittanti, P. Bolzern, E. Pedrotti, N. Pozzi, and R. Scattolini, “A Flexible
Modelling Approach for Software Reliability Growth”, In: Goos G., Har-
manis J (eds), Software reliability modelling and identification, Springer,

Int. J. of Software Engineering, IJSE Vol.11 No.1 January 2018

12

Berlin, 101-140, 1988.

[11] P. K. Kapur, and R. B. Garg, “A Software Reliability Growth Model for an
Error Removal Phenomenon”, Software Engineering Journal, (7), 291-
294, 1992.

[12] M. Trachtenberg, "A General Theory of Software-Reliability Model-
ing."Reliability, IEEE Transactions on Reliability, 39(1), 92-96, 1990.

[13] S. Yamada, J. Hishitani, and S. Osaki, “Software Reliability Growth Model
with Weibull Testing Effort: A model and Application”, IEEE Transaction
Reliability, 42, pp. 100-105, 1993.

[14] P. K. Kapur, A. Tandon, and G. Kaur, “Multi Up-gradations Software Relia-
bility Model”, ICRESH, 468-474, 2010.

[15] O. Singh, P. K. Kapur, S. K. Khatri, and J. N. P. Singh, “Software Reliabil-
ity Growth Modeling for Successive Releases”, proceeding of 4th Interna-
tional Conference on Quality, Reliability and Infocom Technology (IC-
QRIT), PP 77-87, 2012.

[16] O. Singh, D. Aggrawal, and P. K. Kapur, “Reliability Analysis and Optimal
Release Time for a Software using Multi Attribute Utility Theory”, Commu-
nications in Dependability and Quality Management-An International
Journal, Serbia, Vol. 5, No. 1, pp. 50-64, 2012.

[17] O. Singh, P. K. Kapur, and A. Anand, “A Multi Attribute Approach for Re-
lease Time and Reliability Trend Analysis of a Software”, international
Journal of System Assurance and Engineering Management (IJSAEM),
Vol. 3, Issue 3, pp. 246-254, 2012.

[18] O. Singh, J. N. P. Singh, A. Anand, and P. K. Kapur, “Optimal Release
Time of Software: An integrated approach”, proceeding of 4th International
DQM conference on life cycle engineering and management, Serbia, pp-
148-161, 2013.

[19] P. K. Kapur, A. Anand, and O. Singh, “Modeling Successive Software Up-
Gradations with Faults of Different Severity”, Proceedings of the 5th Na-
tional Conference on Computing For Nation Development, ISSN 0973-
7529 ISBN 978-93-80544-00-7, 2011.

[20] P. K. Kapur, O. Singh, A. Garmabaki and J. Singh, “Multi up-gradation
Software Reliability Growth Model with Imperfect Debugging”, Internation-
al Journal of systems Assurance Engineering and Management, 1(4),299-
306, 2010.

[21] O. Singh, A. Anand, and D. Aggrawal, and L. Papic, “Uncertainty Based
Fault Removal Phenomenon and Successive Software Releases Plan-
ning” Communications in Dependability and Quality Management-An In-
ternational Journal, Serbia, Vol. 17, Issue 1, pp 5-17, 2014.

Patching: A Requirement for Complete Software Testing Anand, Das, and Singh

13

[22] O. Singh, P. K. Kapur, A. Anand, and J. Singh, “Stochastic Differential
Equation based Modeling for Multiple Generation of Software and Optimal
Release Planning”, proceedings of 5th International Conference on Quali-
ty, Reliability and Infocom Technology (ICQRIT), Trends and Future Direc-
tions, Kathmandu, Nepal, SN-19, pc-19, 2011.

[23] O. Singh, P. K. Kapur, and A. Anand, “A Stochastic Formulation of Suc-
cessive Software Releases with Fault Severity” Industrial Engineering and
Engineering Management, 136-140, 2011.

[24] A. Anand, A. Singh, P.K. Kapur, and S. Das, “Modeling Conjoint Effect of
Faults Testified from Operational Phase for Successive Software Releas-
es”, Proceedings of the 5th International Conference on Life Cycle Engi-
neering and Management (ICDQM), PP 83-94, 2014.

[25] A. Anand, O. Singh, and S. Das, “Fault Severity based Multi up-gradation
Modeling Considering Testing and Operational Profile”, International Jour-
nal of Computer Applications (0975 – 8887), Volume 124 – No.4, 2015.

[26] S. Jiang and S. Sarkar, “Optimal Software Release Time with Patching
Considered”, in Proc. 13th Annual Workshop Information technologies and
Systems, Seattle, 61-66, 2003.

[27] S. Das, A. Anand, O. Singh, and J. Singh, “Influence of Patching on Opti-
mal Planning for Software Release & Testing Time”, CDQM- An Interna-
tional Journal, Volume 18, Number 4, pp. 81-92, 2015.

[28] A. Anand, M. Agarwal, Y. Tamura, and S. Yamada, “Economic Impact of
Software Patching and Optimal Release Scheduling”, Quality Reliability
Engineering International, DOI: 10.1002/qre.1997, 2016,

[29] A. Wood, “Predicting Software Reliability”, IEEE Computer (11), pp. 69-77,
1996.

[30] J. D. Musa, A. Iannino A., and K. Okumoto, “Software Reliability: Meas-
urement, Prediction, Application”, McGraw-Hill, New York, ISBN-0-07-
044093-X, 1987.

Int. J. of Software Engineering, IJSE Vol.11 No.1 January 2018

14

